Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball

Detalhes bibliográficos
Autor(a) principal: Coelho, Maria Isabel Esteves
Data de Publicação: 2014
Outros Autores: Corsato, Chiara, Rivetti, Sabrina
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.21/5014
Resumo: We study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation { -div(del upsilon/root 1-vertical bar del upsilon vertical bar(2)) in B-R, upsilon=0 on partial derivative B-R,B- where B-R is a ball in R-N (N >= 2). According to the behaviour off = f (r, s) near s = 0, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way.
id RCAP_e1bcf53995c1c1e5aa5950328c298ad0
oai_identifier_str oai:repositorio.ipl.pt:10400.21/5014
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ballQuasilinear elliptic differential equationMinkowski-curvatureDirichlet boundary conditionRadial solutionPositive solutionExistenceMultiplicityVariational methodsWe study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation { -div(del upsilon/root 1-vertical bar del upsilon vertical bar(2)) in B-R, upsilon=0 on partial derivative B-R,B- where B-R is a ball in R-N (N >= 2). According to the behaviour off = f (r, s) near s = 0, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way.Juliusz Schauder CTR Nonlinear StudiesRCIPLCoelho, Maria Isabel EstevesCorsato, ChiaraRivetti, Sabrina2015-08-25T14:41:10Z2014-092014-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/5014engCOELHO, Maria Isabel Esteves; CORSATO, Chiara; RIVETTI, Sabina – Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball. Topological Methods in Nonlinear Analysis. ISSN: 1230-3429. Vol. 44, nr. 1 (2014), pp. 23-391230-3429metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T09:47:50Zoai:repositorio.ipl.pt:10400.21/5014Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:14:21.545125Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball
title Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball
spellingShingle Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball
Coelho, Maria Isabel Esteves
Quasilinear elliptic differential equation
Minkowski-curvature
Dirichlet boundary condition
Radial solution
Positive solution
Existence
Multiplicity
Variational methods
title_short Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball
title_full Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball
title_fullStr Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball
title_full_unstemmed Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball
title_sort Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball
author Coelho, Maria Isabel Esteves
author_facet Coelho, Maria Isabel Esteves
Corsato, Chiara
Rivetti, Sabrina
author_role author
author2 Corsato, Chiara
Rivetti, Sabrina
author2_role author
author
dc.contributor.none.fl_str_mv RCIPL
dc.contributor.author.fl_str_mv Coelho, Maria Isabel Esteves
Corsato, Chiara
Rivetti, Sabrina
dc.subject.por.fl_str_mv Quasilinear elliptic differential equation
Minkowski-curvature
Dirichlet boundary condition
Radial solution
Positive solution
Existence
Multiplicity
Variational methods
topic Quasilinear elliptic differential equation
Minkowski-curvature
Dirichlet boundary condition
Radial solution
Positive solution
Existence
Multiplicity
Variational methods
description We study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation { -div(del upsilon/root 1-vertical bar del upsilon vertical bar(2)) in B-R, upsilon=0 on partial derivative B-R,B- where B-R is a ball in R-N (N >= 2). According to the behaviour off = f (r, s) near s = 0, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
2014-09-01T00:00:00Z
2015-08-25T14:41:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.21/5014
url http://hdl.handle.net/10400.21/5014
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv COELHO, Maria Isabel Esteves; CORSATO, Chiara; RIVETTI, Sabina – Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball. Topological Methods in Nonlinear Analysis. ISSN: 1230-3429. Vol. 44, nr. 1 (2014), pp. 23-39
1230-3429
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Juliusz Schauder CTR Nonlinear Studies
publisher.none.fl_str_mv Juliusz Schauder CTR Nonlinear Studies
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133401579520000