Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://repositorio.inesctec.pt/handle/123456789/3301 |
Resumo: | This paper reports the application of a new kernel density estimation model based on the Nadaraya-Watson estimator, for the problem of wind power uncertainty forecasting. The new model is described, including the use of kernels specific to the wind power problem. A novel time-adaptive approach is presented. The quality of the new model is benchmarked against a splines quantile regression model currently in use in the industry. The case studies refer to two distinct wind farms in the United States and show that the new model produces better results, evaluated with suitable quality metrics such as calibration, sharpness and skill score, even if the wind farms exhibit different wind behavior characteristics. |
id |
RCAP_a4973eb2386ada74d3fed471016a3c04 |
---|---|
oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/3301 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Time Adaptive Conditional Kernel Density Estimation for Wind Power ForecastingThis paper reports the application of a new kernel density estimation model based on the Nadaraya-Watson estimator, for the problem of wind power uncertainty forecasting. The new model is described, including the use of kernels specific to the wind power problem. A novel time-adaptive approach is presented. The quality of the new model is benchmarked against a splines quantile regression model currently in use in the industry. The case studies refer to two distinct wind farms in the United States and show that the new model produces better results, evaluated with suitable quality metrics such as calibration, sharpness and skill score, even if the wind farms exhibit different wind behavior characteristics.2017-11-17T11:55:33Z2012-01-01T00:00:00Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/3301engJianhui WangRicardo Jorge BessaVladimiro MirandaAudun BotterudEmil Constantinescuinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:19:51Zoai:repositorio.inesctec.pt:123456789/3301Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:21.002511Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting |
title |
Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting |
spellingShingle |
Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting Jianhui Wang |
title_short |
Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting |
title_full |
Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting |
title_fullStr |
Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting |
title_full_unstemmed |
Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting |
title_sort |
Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting |
author |
Jianhui Wang |
author_facet |
Jianhui Wang Ricardo Jorge Bessa Vladimiro Miranda Audun Botterud Emil Constantinescu |
author_role |
author |
author2 |
Ricardo Jorge Bessa Vladimiro Miranda Audun Botterud Emil Constantinescu |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Jianhui Wang Ricardo Jorge Bessa Vladimiro Miranda Audun Botterud Emil Constantinescu |
description |
This paper reports the application of a new kernel density estimation model based on the Nadaraya-Watson estimator, for the problem of wind power uncertainty forecasting. The new model is described, including the use of kernels specific to the wind power problem. A novel time-adaptive approach is presented. The quality of the new model is benchmarked against a splines quantile regression model currently in use in the industry. The case studies refer to two distinct wind farms in the United States and show that the new model produces better results, evaluated with suitable quality metrics such as calibration, sharpness and skill score, even if the wind farms exhibit different wind behavior characteristics. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01-01T00:00:00Z 2012 2017-11-17T11:55:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/3301 |
url |
http://repositorio.inesctec.pt/handle/123456789/3301 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131599944548352 |