Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting

Detalhes bibliográficos
Autor(a) principal: Jianhui Wang
Data de Publicação: 2012
Outros Autores: Ricardo Jorge Bessa, Vladimiro Miranda, Audun Botterud, Emil Constantinescu
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/3301
Resumo: This paper reports the application of a new kernel density estimation model based on the Nadaraya-Watson estimator, for the problem of wind power uncertainty forecasting. The new model is described, including the use of kernels specific to the wind power problem. A novel time-adaptive approach is presented. The quality of the new model is benchmarked against a splines quantile regression model currently in use in the industry. The case studies refer to two distinct wind farms in the United States and show that the new model produces better results, evaluated with suitable quality metrics such as calibration, sharpness and skill score, even if the wind farms exhibit different wind behavior characteristics.
id RCAP_a4973eb2386ada74d3fed471016a3c04
oai_identifier_str oai:repositorio.inesctec.pt:123456789/3301
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Time Adaptive Conditional Kernel Density Estimation for Wind Power ForecastingThis paper reports the application of a new kernel density estimation model based on the Nadaraya-Watson estimator, for the problem of wind power uncertainty forecasting. The new model is described, including the use of kernels specific to the wind power problem. A novel time-adaptive approach is presented. The quality of the new model is benchmarked against a splines quantile regression model currently in use in the industry. The case studies refer to two distinct wind farms in the United States and show that the new model produces better results, evaluated with suitable quality metrics such as calibration, sharpness and skill score, even if the wind farms exhibit different wind behavior characteristics.2017-11-17T11:55:33Z2012-01-01T00:00:00Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/3301engJianhui WangRicardo Jorge BessaVladimiro MirandaAudun BotterudEmil Constantinescuinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:19:51Zoai:repositorio.inesctec.pt:123456789/3301Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:21.002511Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting
title Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting
spellingShingle Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting
Jianhui Wang
title_short Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting
title_full Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting
title_fullStr Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting
title_full_unstemmed Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting
title_sort Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting
author Jianhui Wang
author_facet Jianhui Wang
Ricardo Jorge Bessa
Vladimiro Miranda
Audun Botterud
Emil Constantinescu
author_role author
author2 Ricardo Jorge Bessa
Vladimiro Miranda
Audun Botterud
Emil Constantinescu
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Jianhui Wang
Ricardo Jorge Bessa
Vladimiro Miranda
Audun Botterud
Emil Constantinescu
description This paper reports the application of a new kernel density estimation model based on the Nadaraya-Watson estimator, for the problem of wind power uncertainty forecasting. The new model is described, including the use of kernels specific to the wind power problem. A novel time-adaptive approach is presented. The quality of the new model is benchmarked against a splines quantile regression model currently in use in the industry. The case studies refer to two distinct wind farms in the United States and show that the new model produces better results, evaluated with suitable quality metrics such as calibration, sharpness and skill score, even if the wind farms exhibit different wind behavior characteristics.
publishDate 2012
dc.date.none.fl_str_mv 2012-01-01T00:00:00Z
2012
2017-11-17T11:55:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/3301
url http://repositorio.inesctec.pt/handle/123456789/3301
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131599944548352