Demand forecasting in a company : a case study from footwear industry

Detalhes bibliográficos
Autor(a) principal: Pinto, Maria Francisca de Lima Teixeira
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/42549
Resumo: Demand forecasting has been investigated for decades, in several areas, such as manufacturing, logistics, and finance, due to its importance in corporate planning and decision-making. Several methods have been tested in different industries, but there is still no consensus among authors, as to which method should be regularly applied since market characteristics differ from company to company. The purpose of this study is to identify the demand forecasting method with the highest accuracy for the characteristics of the data provided by the Portuguese footwear company 8000Kicks, and the reasons for this method have better results than the others tested. A quantitative study is carried out, in the form of problem-solving. The aim of this research is to help solve the company’s problem of lack of efficiency in the use of company resources, impacting its planning and decision-making. Time Series, Regression, and Artificial Intelligence models were selected and tested, to analyse their accuracy, according to the chosen performance measure, Mean Square Error (MSE). The Artificial Neural Network model revealed better accuracy, with the lowest MSE of the models tested, with a test value of 8,5865E-06, followed by Nonlinear Regression. It is concluded that, for this study, the nonlinear models appear to have better results when compared to the linear models, due to their characteristics of adaptability, better fit to the data, and ability to capture complex relationships and dynamic processes.
id RCAP_a52e977562ed206d52c93150dc17df08
oai_identifier_str oai:repositorio.ucp.pt:10400.14/42549
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Demand forecasting in a company : a case study from footwear industryDemand forecastingFootwearTime seriesRegressionArtificial intelligencePrevisão da procuraCalçadoSéries temporaisRegressãoInteligência artificialDomínio/Área Científica::Ciências Sociais::Economia e GestãoDemand forecasting has been investigated for decades, in several areas, such as manufacturing, logistics, and finance, due to its importance in corporate planning and decision-making. Several methods have been tested in different industries, but there is still no consensus among authors, as to which method should be regularly applied since market characteristics differ from company to company. The purpose of this study is to identify the demand forecasting method with the highest accuracy for the characteristics of the data provided by the Portuguese footwear company 8000Kicks, and the reasons for this method have better results than the others tested. A quantitative study is carried out, in the form of problem-solving. The aim of this research is to help solve the company’s problem of lack of efficiency in the use of company resources, impacting its planning and decision-making. Time Series, Regression, and Artificial Intelligence models were selected and tested, to analyse their accuracy, according to the chosen performance measure, Mean Square Error (MSE). The Artificial Neural Network model revealed better accuracy, with the lowest MSE of the models tested, with a test value of 8,5865E-06, followed by Nonlinear Regression. It is concluded that, for this study, the nonlinear models appear to have better results when compared to the linear models, due to their characteristics of adaptability, better fit to the data, and ability to capture complex relationships and dynamic processes.O tema da previsão da procura tem vindo a ser investigado há décadas, por diversas áreas, como na produção, logística, e finanças, dada a sua importância no planeamento e tomada de decisão das empresas. Vários métodos foram testados em diferentes indústrias, não existindo ainda um consenso entre os autores de qual o melhor método a ser aplicado, uma vez que as características de mercado diferem de empresa para empresa. O presente estudo pretende analisar métodos de previsão da procura numa empresa de calçado portuguesa, 8000Kicks, com o intuito de identificar o método com maior precisão para as características dessa mesma empresa, e as razões para esse método ter melhores resultados que os restantes testados. Procedeu-se à realização de um estudo quantitativo, sob a forma de resolução de problema. O objetivo desta investigação é ajudar a resolver o problema da falta de eficiência, para a empresa em análise, na utilização dos seus recursos, no âmbito do planeamento e tomada de decisão. Modelos de Séries Temporais, Regressão, e Inteligência Artificial foram selecionados e testados, analisando a sua exatidão através da medida de performance selecionada, Erro Quadrático Médio (EQM). O modelo Artificial Neural Network demonstrou melhor precisão, com o valor mais baixo do EQM dos modelos testados, seguido da Regressão Não-linear. Conclui-se que, para o presente estudo, os modelos não-lineares apresentam melhores resultados comparativamente aos lineares, por efeito das suas características de adaptabilidade, melhor encaixe nos dados, e habilidade em capturar relações complexas e processos dinâmicos.Teymourifar, AydinVeritati - Repositório Institucional da Universidade Católica PortuguesaPinto, Maria Francisca de Lima Teixeira2023-09-21T15:05:21Z2023-07-102023-042023-07-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/42549TID:203350561enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-26T01:44:19Zoai:repositorio.ucp.pt:10400.14/42549Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:30:59.558757Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Demand forecasting in a company : a case study from footwear industry
title Demand forecasting in a company : a case study from footwear industry
spellingShingle Demand forecasting in a company : a case study from footwear industry
Pinto, Maria Francisca de Lima Teixeira
Demand forecasting
Footwear
Time series
Regression
Artificial intelligence
Previsão da procura
Calçado
Séries temporais
Regressão
Inteligência artificial
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Demand forecasting in a company : a case study from footwear industry
title_full Demand forecasting in a company : a case study from footwear industry
title_fullStr Demand forecasting in a company : a case study from footwear industry
title_full_unstemmed Demand forecasting in a company : a case study from footwear industry
title_sort Demand forecasting in a company : a case study from footwear industry
author Pinto, Maria Francisca de Lima Teixeira
author_facet Pinto, Maria Francisca de Lima Teixeira
author_role author
dc.contributor.none.fl_str_mv Teymourifar, Aydin
Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Pinto, Maria Francisca de Lima Teixeira
dc.subject.por.fl_str_mv Demand forecasting
Footwear
Time series
Regression
Artificial intelligence
Previsão da procura
Calçado
Séries temporais
Regressão
Inteligência artificial
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Demand forecasting
Footwear
Time series
Regression
Artificial intelligence
Previsão da procura
Calçado
Séries temporais
Regressão
Inteligência artificial
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description Demand forecasting has been investigated for decades, in several areas, such as manufacturing, logistics, and finance, due to its importance in corporate planning and decision-making. Several methods have been tested in different industries, but there is still no consensus among authors, as to which method should be regularly applied since market characteristics differ from company to company. The purpose of this study is to identify the demand forecasting method with the highest accuracy for the characteristics of the data provided by the Portuguese footwear company 8000Kicks, and the reasons for this method have better results than the others tested. A quantitative study is carried out, in the form of problem-solving. The aim of this research is to help solve the company’s problem of lack of efficiency in the use of company resources, impacting its planning and decision-making. Time Series, Regression, and Artificial Intelligence models were selected and tested, to analyse their accuracy, according to the chosen performance measure, Mean Square Error (MSE). The Artificial Neural Network model revealed better accuracy, with the lowest MSE of the models tested, with a test value of 8,5865E-06, followed by Nonlinear Regression. It is concluded that, for this study, the nonlinear models appear to have better results when compared to the linear models, due to their characteristics of adaptability, better fit to the data, and ability to capture complex relationships and dynamic processes.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-21T15:05:21Z
2023-07-10
2023-04
2023-07-10T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/42549
TID:203350561
url http://hdl.handle.net/10400.14/42549
identifier_str_mv TID:203350561
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133578488971265