Demand forecasting in a company : a case study from footwear industry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.14/42549 |
Resumo: | Demand forecasting has been investigated for decades, in several areas, such as manufacturing, logistics, and finance, due to its importance in corporate planning and decision-making. Several methods have been tested in different industries, but there is still no consensus among authors, as to which method should be regularly applied since market characteristics differ from company to company. The purpose of this study is to identify the demand forecasting method with the highest accuracy for the characteristics of the data provided by the Portuguese footwear company 8000Kicks, and the reasons for this method have better results than the others tested. A quantitative study is carried out, in the form of problem-solving. The aim of this research is to help solve the company’s problem of lack of efficiency in the use of company resources, impacting its planning and decision-making. Time Series, Regression, and Artificial Intelligence models were selected and tested, to analyse their accuracy, according to the chosen performance measure, Mean Square Error (MSE). The Artificial Neural Network model revealed better accuracy, with the lowest MSE of the models tested, with a test value of 8,5865E-06, followed by Nonlinear Regression. It is concluded that, for this study, the nonlinear models appear to have better results when compared to the linear models, due to their characteristics of adaptability, better fit to the data, and ability to capture complex relationships and dynamic processes. |
id |
RCAP_a52e977562ed206d52c93150dc17df08 |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/42549 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Demand forecasting in a company : a case study from footwear industryDemand forecastingFootwearTime seriesRegressionArtificial intelligencePrevisão da procuraCalçadoSéries temporaisRegressãoInteligência artificialDomínio/Área Científica::Ciências Sociais::Economia e GestãoDemand forecasting has been investigated for decades, in several areas, such as manufacturing, logistics, and finance, due to its importance in corporate planning and decision-making. Several methods have been tested in different industries, but there is still no consensus among authors, as to which method should be regularly applied since market characteristics differ from company to company. The purpose of this study is to identify the demand forecasting method with the highest accuracy for the characteristics of the data provided by the Portuguese footwear company 8000Kicks, and the reasons for this method have better results than the others tested. A quantitative study is carried out, in the form of problem-solving. The aim of this research is to help solve the company’s problem of lack of efficiency in the use of company resources, impacting its planning and decision-making. Time Series, Regression, and Artificial Intelligence models were selected and tested, to analyse their accuracy, according to the chosen performance measure, Mean Square Error (MSE). The Artificial Neural Network model revealed better accuracy, with the lowest MSE of the models tested, with a test value of 8,5865E-06, followed by Nonlinear Regression. It is concluded that, for this study, the nonlinear models appear to have better results when compared to the linear models, due to their characteristics of adaptability, better fit to the data, and ability to capture complex relationships and dynamic processes.O tema da previsão da procura tem vindo a ser investigado há décadas, por diversas áreas, como na produção, logística, e finanças, dada a sua importância no planeamento e tomada de decisão das empresas. Vários métodos foram testados em diferentes indústrias, não existindo ainda um consenso entre os autores de qual o melhor método a ser aplicado, uma vez que as características de mercado diferem de empresa para empresa. O presente estudo pretende analisar métodos de previsão da procura numa empresa de calçado portuguesa, 8000Kicks, com o intuito de identificar o método com maior precisão para as características dessa mesma empresa, e as razões para esse método ter melhores resultados que os restantes testados. Procedeu-se à realização de um estudo quantitativo, sob a forma de resolução de problema. O objetivo desta investigação é ajudar a resolver o problema da falta de eficiência, para a empresa em análise, na utilização dos seus recursos, no âmbito do planeamento e tomada de decisão. Modelos de Séries Temporais, Regressão, e Inteligência Artificial foram selecionados e testados, analisando a sua exatidão através da medida de performance selecionada, Erro Quadrático Médio (EQM). O modelo Artificial Neural Network demonstrou melhor precisão, com o valor mais baixo do EQM dos modelos testados, seguido da Regressão Não-linear. Conclui-se que, para o presente estudo, os modelos não-lineares apresentam melhores resultados comparativamente aos lineares, por efeito das suas características de adaptabilidade, melhor encaixe nos dados, e habilidade em capturar relações complexas e processos dinâmicos.Teymourifar, AydinVeritati - Repositório Institucional da Universidade Católica PortuguesaPinto, Maria Francisca de Lima Teixeira2023-09-21T15:05:21Z2023-07-102023-042023-07-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/42549TID:203350561enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-26T01:44:19Zoai:repositorio.ucp.pt:10400.14/42549Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:30:59.558757Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Demand forecasting in a company : a case study from footwear industry |
title |
Demand forecasting in a company : a case study from footwear industry |
spellingShingle |
Demand forecasting in a company : a case study from footwear industry Pinto, Maria Francisca de Lima Teixeira Demand forecasting Footwear Time series Regression Artificial intelligence Previsão da procura Calçado Séries temporais Regressão Inteligência artificial Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Demand forecasting in a company : a case study from footwear industry |
title_full |
Demand forecasting in a company : a case study from footwear industry |
title_fullStr |
Demand forecasting in a company : a case study from footwear industry |
title_full_unstemmed |
Demand forecasting in a company : a case study from footwear industry |
title_sort |
Demand forecasting in a company : a case study from footwear industry |
author |
Pinto, Maria Francisca de Lima Teixeira |
author_facet |
Pinto, Maria Francisca de Lima Teixeira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Teymourifar, Aydin Veritati - Repositório Institucional da Universidade Católica Portuguesa |
dc.contributor.author.fl_str_mv |
Pinto, Maria Francisca de Lima Teixeira |
dc.subject.por.fl_str_mv |
Demand forecasting Footwear Time series Regression Artificial intelligence Previsão da procura Calçado Séries temporais Regressão Inteligência artificial Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Demand forecasting Footwear Time series Regression Artificial intelligence Previsão da procura Calçado Séries temporais Regressão Inteligência artificial Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
Demand forecasting has been investigated for decades, in several areas, such as manufacturing, logistics, and finance, due to its importance in corporate planning and decision-making. Several methods have been tested in different industries, but there is still no consensus among authors, as to which method should be regularly applied since market characteristics differ from company to company. The purpose of this study is to identify the demand forecasting method with the highest accuracy for the characteristics of the data provided by the Portuguese footwear company 8000Kicks, and the reasons for this method have better results than the others tested. A quantitative study is carried out, in the form of problem-solving. The aim of this research is to help solve the company’s problem of lack of efficiency in the use of company resources, impacting its planning and decision-making. Time Series, Regression, and Artificial Intelligence models were selected and tested, to analyse their accuracy, according to the chosen performance measure, Mean Square Error (MSE). The Artificial Neural Network model revealed better accuracy, with the lowest MSE of the models tested, with a test value of 8,5865E-06, followed by Nonlinear Regression. It is concluded that, for this study, the nonlinear models appear to have better results when compared to the linear models, due to their characteristics of adaptability, better fit to the data, and ability to capture complex relationships and dynamic processes. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-21T15:05:21Z 2023-07-10 2023-04 2023-07-10T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/42549 TID:203350561 |
url |
http://hdl.handle.net/10400.14/42549 |
identifier_str_mv |
TID:203350561 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133578488971265 |