A study on variations of Genetic Programming applied to time series forecasting: Machine Learning for Energy Consumption Forecasting
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/145478 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
id |
RCAP_ae924f20a09ca3e10dcd50b285516a97 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/145478 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A study on variations of Genetic Programming applied to time series forecasting: Machine Learning for Energy Consumption ForecastingMachine LearningGenetic ProgrammingGeometric Semantic Genetic ProgrammingTime SeriesDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceEvolutionary Computation is a sub-field of Machine Learning algorithms based on Darwin’s theory of Evolution. Individuals are evolved using the principles of mutation, crossover and natural selection. One of the most known Evolutionary Algorithms is Genetic Programming (GP), that evolves as individuals computer programs in order to solve regression problems. In this thesis two variations of GP, namely Geometric Semantic Genetic Programming(GSGP) and Tree-based Pipeline Optimization Tool(TPOT), are applied to two energy consumption time series regression problems. Their performance are then compared to state-of-the-art models, LSTM and SVR optimized with DE, and to standard GP. It is showed that the variations of GP outperform standard GP and SVR optimized with DE, while also having comparable performance to LSTM. Additionally a study on the feature selection ability of GSGP is proposed, showing that the algorithm is not actually able to perform feature selection.Vanneschi, LeonardoRUNFarinati, Davide2022-11-14T15:48:34Z2022-10-242022-10-24T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/145478TID:203105630enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:25:52Zoai:run.unl.pt:10362/145478Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:52:05.940209Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A study on variations of Genetic Programming applied to time series forecasting: Machine Learning for Energy Consumption Forecasting |
title |
A study on variations of Genetic Programming applied to time series forecasting: Machine Learning for Energy Consumption Forecasting |
spellingShingle |
A study on variations of Genetic Programming applied to time series forecasting: Machine Learning for Energy Consumption Forecasting Farinati, Davide Machine Learning Genetic Programming Geometric Semantic Genetic Programming Time Series |
title_short |
A study on variations of Genetic Programming applied to time series forecasting: Machine Learning for Energy Consumption Forecasting |
title_full |
A study on variations of Genetic Programming applied to time series forecasting: Machine Learning for Energy Consumption Forecasting |
title_fullStr |
A study on variations of Genetic Programming applied to time series forecasting: Machine Learning for Energy Consumption Forecasting |
title_full_unstemmed |
A study on variations of Genetic Programming applied to time series forecasting: Machine Learning for Energy Consumption Forecasting |
title_sort |
A study on variations of Genetic Programming applied to time series forecasting: Machine Learning for Energy Consumption Forecasting |
author |
Farinati, Davide |
author_facet |
Farinati, Davide |
author_role |
author |
dc.contributor.none.fl_str_mv |
Vanneschi, Leonardo RUN |
dc.contributor.author.fl_str_mv |
Farinati, Davide |
dc.subject.por.fl_str_mv |
Machine Learning Genetic Programming Geometric Semantic Genetic Programming Time Series |
topic |
Machine Learning Genetic Programming Geometric Semantic Genetic Programming Time Series |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-14T15:48:34Z 2022-10-24 2022-10-24T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/145478 TID:203105630 |
url |
http://hdl.handle.net/10362/145478 |
identifier_str_mv |
TID:203105630 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138112914325504 |