Predicting healthcare high-cost users using data mining methods
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/134138 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
id |
RCAP_a665bd21def1b289f91b14f544567fd4 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/134138 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predicting healthcare high-cost users using data mining methodsHealthcare CostsCosts PredictionHealth ManagementPredictive MethodsData MiningDissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceThe increase in healthcare costs is, perhaps, one of the most important issues that governments and organizations face nowadays. An ageing population and technological advancements are the key reasons for this phenomenon. In this scenario, proactive measures are very important. This work aimed to improve the effectiveness of the prevention by helping the identification of the most probable high-cost users of health services in future years. Data from 2015 to 2019 of approximately 30,000 Central Bank of Brazil’s Health Program’s enrollees were used to train, validate and test four types of models, considering the kind of high-cost users (simple or cost-bloomers, i.e., non-high-cost in previous periods) and the time-span between predictors and the dependent variable (none or one year), an innovation suggested by other authors. Different percentual cut-off points to define highcost were used, and up to 67% of high-risk users’ expenses could be correctly captured. Results confirmed the importance of previous costs data for this kind of prediction and showed that costbloomers and one-year time-span approaches reach good performance, creating opportunities to improve users’ health outcomes while contributing to the fiscal sustainability of private and public health systems.Henriques, Roberto André PereiraRUNPantaleão, Bernardo Neves2022-03-09T17:46:36Z2022-01-262022-01-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/134138TID:202959830enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:12:35Zoai:run.unl.pt:10362/134138Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:47:59.907154Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predicting healthcare high-cost users using data mining methods |
title |
Predicting healthcare high-cost users using data mining methods |
spellingShingle |
Predicting healthcare high-cost users using data mining methods Pantaleão, Bernardo Neves Healthcare Costs Costs Prediction Health Management Predictive Methods Data Mining |
title_short |
Predicting healthcare high-cost users using data mining methods |
title_full |
Predicting healthcare high-cost users using data mining methods |
title_fullStr |
Predicting healthcare high-cost users using data mining methods |
title_full_unstemmed |
Predicting healthcare high-cost users using data mining methods |
title_sort |
Predicting healthcare high-cost users using data mining methods |
author |
Pantaleão, Bernardo Neves |
author_facet |
Pantaleão, Bernardo Neves |
author_role |
author |
dc.contributor.none.fl_str_mv |
Henriques, Roberto André Pereira RUN |
dc.contributor.author.fl_str_mv |
Pantaleão, Bernardo Neves |
dc.subject.por.fl_str_mv |
Healthcare Costs Costs Prediction Health Management Predictive Methods Data Mining |
topic |
Healthcare Costs Costs Prediction Health Management Predictive Methods Data Mining |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-09T17:46:36Z 2022-01-26 2022-01-26T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/134138 TID:202959830 |
url |
http://hdl.handle.net/10362/134138 |
identifier_str_mv |
TID:202959830 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138081594408960 |