Advanced composite material simulation

Detalhes bibliográficos
Autor(a) principal: Oller,S.
Data de Publicação: 2008
Outros Autores: Martínez,X., Barbat,A., Rastellini,F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://scielo.pt/scielo.php?script=sci_arttext&pid=S0870-83122008000100002
Resumo: A computational methodology is presented for modeling the non-linear mechanical behavior of composite structures made of FRP (Fiber-Reinforced Polymers) laminates. The model is based on the appropriate combination of the constitutive models of compounding materials, considered to behave as isolated continua, together with additional “closure equations” that characterize the micro-mechanics of the composite from a morphological point of view. To this end, any appropriate constitutive model may be selected for each phase. Each component is modeled separately and the global response is obtained by assembling all contributions taking into account the interactions between components in a general phenomenological way. To model the behavior of a single uni-directional (UD) composite laminated, a Serial-Parallel continuum approach has been developed assuming that components behave as parallel materials in the fibers alignment direction and as serial materials in orthogonal directions. Taking into account the internal morphology of the composite material, it is devised a strategy for decoupling and coupling component phases. This methodology [Rastellini 2006], named "compounding of behavior", allows to take into consideration local non linear phenomenon in the compounding materials, like damage, plasticity, etc. in a coupled manner. It is based on the proper management of homogenous constitutive models, already available for each component. In this way, it is used all developments achieved in constitutive modeling for plain materials, what makes possible the transference of this technology to composites. A laminated theory complemented with the proposed UD model is employed to describe the mechanical behavior of multi-directional laminates. A specific solution strategy for the general non linear case is proposed. It provides quick local and global convergences, what makes the model suitable for large scale structures. The model brings answers on the non-linear behavior of composites, where classical micro-mechanics formulas are restricted to their linear elastic part. The methodology is validated through several numerical analyses and contrasted against experimental data and benchmark tests.
id RCAP_a6f6cfa594f7a0ec6ba1540ed6692c26
oai_identifier_str oai:scielo:S0870-83122008000100002
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Advanced composite material simulationComposite MaterialsNumerical SimulationContinuum MechanicsConstitutive ModelingA computational methodology is presented for modeling the non-linear mechanical behavior of composite structures made of FRP (Fiber-Reinforced Polymers) laminates. The model is based on the appropriate combination of the constitutive models of compounding materials, considered to behave as isolated continua, together with additional “closure equations” that characterize the micro-mechanics of the composite from a morphological point of view. To this end, any appropriate constitutive model may be selected for each phase. Each component is modeled separately and the global response is obtained by assembling all contributions taking into account the interactions between components in a general phenomenological way. To model the behavior of a single uni-directional (UD) composite laminated, a Serial-Parallel continuum approach has been developed assuming that components behave as parallel materials in the fibers alignment direction and as serial materials in orthogonal directions. Taking into account the internal morphology of the composite material, it is devised a strategy for decoupling and coupling component phases. This methodology [Rastellini 2006], named "compounding of behavior", allows to take into consideration local non linear phenomenon in the compounding materials, like damage, plasticity, etc. in a coupled manner. It is based on the proper management of homogenous constitutive models, already available for each component. In this way, it is used all developments achieved in constitutive modeling for plain materials, what makes possible the transference of this technology to composites. A laminated theory complemented with the proposed UD model is employed to describe the mechanical behavior of multi-directional laminates. A specific solution strategy for the general non linear case is proposed. It provides quick local and global convergences, what makes the model suitable for large scale structures. The model brings answers on the non-linear behavior of composites, where classical micro-mechanics formulas are restricted to their linear elastic part. The methodology is validated through several numerical analyses and contrasted against experimental data and benchmark tests.Sociedade Portuguesa de Materiais2008-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articletext/htmlhttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0870-83122008000100002Ciência & Tecnologia dos Materiais v.20 n.1-2 2008reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0870-83122008000100002Oller,S.Martínez,X.Barbat,A.Rastellini,F.info:eu-repo/semantics/openAccess2024-02-06T17:01:04Zoai:scielo:S0870-83122008000100002Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:16:41.233167Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Advanced composite material simulation
title Advanced composite material simulation
spellingShingle Advanced composite material simulation
Oller,S.
Composite Materials
Numerical Simulation
Continuum Mechanics
Constitutive Modeling
title_short Advanced composite material simulation
title_full Advanced composite material simulation
title_fullStr Advanced composite material simulation
title_full_unstemmed Advanced composite material simulation
title_sort Advanced composite material simulation
author Oller,S.
author_facet Oller,S.
Martínez,X.
Barbat,A.
Rastellini,F.
author_role author
author2 Martínez,X.
Barbat,A.
Rastellini,F.
author2_role author
author
author
dc.contributor.author.fl_str_mv Oller,S.
Martínez,X.
Barbat,A.
Rastellini,F.
dc.subject.por.fl_str_mv Composite Materials
Numerical Simulation
Continuum Mechanics
Constitutive Modeling
topic Composite Materials
Numerical Simulation
Continuum Mechanics
Constitutive Modeling
description A computational methodology is presented for modeling the non-linear mechanical behavior of composite structures made of FRP (Fiber-Reinforced Polymers) laminates. The model is based on the appropriate combination of the constitutive models of compounding materials, considered to behave as isolated continua, together with additional “closure equations” that characterize the micro-mechanics of the composite from a morphological point of view. To this end, any appropriate constitutive model may be selected for each phase. Each component is modeled separately and the global response is obtained by assembling all contributions taking into account the interactions between components in a general phenomenological way. To model the behavior of a single uni-directional (UD) composite laminated, a Serial-Parallel continuum approach has been developed assuming that components behave as parallel materials in the fibers alignment direction and as serial materials in orthogonal directions. Taking into account the internal morphology of the composite material, it is devised a strategy for decoupling and coupling component phases. This methodology [Rastellini 2006], named "compounding of behavior", allows to take into consideration local non linear phenomenon in the compounding materials, like damage, plasticity, etc. in a coupled manner. It is based on the proper management of homogenous constitutive models, already available for each component. In this way, it is used all developments achieved in constitutive modeling for plain materials, what makes possible the transference of this technology to composites. A laminated theory complemented with the proposed UD model is employed to describe the mechanical behavior of multi-directional laminates. A specific solution strategy for the general non linear case is proposed. It provides quick local and global convergences, what makes the model suitable for large scale structures. The model brings answers on the non-linear behavior of composites, where classical micro-mechanics formulas are restricted to their linear elastic part. The methodology is validated through several numerical analyses and contrasted against experimental data and benchmark tests.
publishDate 2008
dc.date.none.fl_str_mv 2008-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://scielo.pt/scielo.php?script=sci_arttext&pid=S0870-83122008000100002
url http://scielo.pt/scielo.php?script=sci_arttext&pid=S0870-83122008000100002
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://scielo.pt/scielo.php?script=sci_arttext&pid=S0870-83122008000100002
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Portuguesa de Materiais
publisher.none.fl_str_mv Sociedade Portuguesa de Materiais
dc.source.none.fl_str_mv Ciência & Tecnologia dos Materiais v.20 n.1-2 2008
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137262828519424