Forecasting the Stochastic Vicious Cycle of Cancer Progression and Immune Response

Detalhes bibliográficos
Autor(a) principal: Muhammad Idrees
Data de Publicação: 2021
Outros Autores: Ayesha Sohail, João Manuel R. S. Tavares
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/134160
Resumo: It is accepted that cancer progression is a stochastic process, and there is a bifurcation in cancer cell count, which gets chaotic if not treated at preliminary stages. Therefore, strategies for fighting cancer at early stages are highly desired. However, the interaction of the immune system with cancer cells is not a straightforward process. The stochastic cell interactions lead to uncontrollable dynamics and sometimes to the death of the patient. A stochastic computational framework developed based on principles of the cancer-immune cell interaction is proposed in this article. The results obtained using the framework for breast cancer are close to the experimental findings, confirming that it can be a useful tool for identifying possible control measures. This study concludes that a control strategy based on stochastic modeling is promising and that a deep understanding of the interaction cell rates is essential for timely cancer control measures. (c) 2021 The Author(s)
id RCAP_a6fb171183533d286fef3107e7f444ad
oai_identifier_str oai:repositorio-aberto.up.pt:10216/134160
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Forecasting the Stochastic Vicious Cycle of Cancer Progression and Immune ResponseCiências Tecnológicas, Ciências médicas e da saúdeTechnological sciences, Medical and Health sciencesIt is accepted that cancer progression is a stochastic process, and there is a bifurcation in cancer cell count, which gets chaotic if not treated at preliminary stages. Therefore, strategies for fighting cancer at early stages are highly desired. However, the interaction of the immune system with cancer cells is not a straightforward process. The stochastic cell interactions lead to uncontrollable dynamics and sometimes to the death of the patient. A stochastic computational framework developed based on principles of the cancer-immune cell interaction is proposed in this article. The results obtained using the framework for breast cancer are close to the experimental findings, confirming that it can be a useful tool for identifying possible control measures. This study concludes that a control strategy based on stochastic modeling is promising and that a deep understanding of the interaction cell rates is essential for timely cancer control measures. (c) 2021 The Author(s)2021-072021-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleimage/pngapplication/pdfhttps://hdl.handle.net/10216/134160eng10.1016/j.rinp.2021.104420Muhammad IdreesAyesha SohailJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:26:49Zoai:repositorio-aberto.up.pt:10216/134160Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:40:40.117726Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Forecasting the Stochastic Vicious Cycle of Cancer Progression and Immune Response
title Forecasting the Stochastic Vicious Cycle of Cancer Progression and Immune Response
spellingShingle Forecasting the Stochastic Vicious Cycle of Cancer Progression and Immune Response
Muhammad Idrees
Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
title_short Forecasting the Stochastic Vicious Cycle of Cancer Progression and Immune Response
title_full Forecasting the Stochastic Vicious Cycle of Cancer Progression and Immune Response
title_fullStr Forecasting the Stochastic Vicious Cycle of Cancer Progression and Immune Response
title_full_unstemmed Forecasting the Stochastic Vicious Cycle of Cancer Progression and Immune Response
title_sort Forecasting the Stochastic Vicious Cycle of Cancer Progression and Immune Response
author Muhammad Idrees
author_facet Muhammad Idrees
Ayesha Sohail
João Manuel R. S. Tavares
author_role author
author2 Ayesha Sohail
João Manuel R. S. Tavares
author2_role author
author
dc.contributor.author.fl_str_mv Muhammad Idrees
Ayesha Sohail
João Manuel R. S. Tavares
dc.subject.por.fl_str_mv Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
topic Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
description It is accepted that cancer progression is a stochastic process, and there is a bifurcation in cancer cell count, which gets chaotic if not treated at preliminary stages. Therefore, strategies for fighting cancer at early stages are highly desired. However, the interaction of the immune system with cancer cells is not a straightforward process. The stochastic cell interactions lead to uncontrollable dynamics and sometimes to the death of the patient. A stochastic computational framework developed based on principles of the cancer-immune cell interaction is proposed in this article. The results obtained using the framework for breast cancer are close to the experimental findings, confirming that it can be a useful tool for identifying possible control measures. This study concludes that a control strategy based on stochastic modeling is promising and that a deep understanding of the interaction cell rates is essential for timely cancer control measures. (c) 2021 The Author(s)
publishDate 2021
dc.date.none.fl_str_mv 2021-07
2021-07-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/134160
url https://hdl.handle.net/10216/134160
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1016/j.rinp.2021.104420
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv image/png
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135720954134528