Comparison of machine learning strategies for infrared thermography of skin cancer

Detalhes bibliográficos
Autor(a) principal: Carolina Magalhães
Data de Publicação: 2021
Outros Autores: João Manuel R. S. Tavares, Joaquim Mendes, Ricardo Vardasca
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/134183
Resumo: Objective: The aim of this work was to explore the potential of infrared thermal imaging as an aiding tool for the diagnosis of skin cancer lesions, using artificial intelligence methods. Methods: Thermal parameters of skin tumours were retrieved from thermograms and used as input features for two machine learning based strategies: ensemble learning and deep learning. Results: The deep learning strategy outperformed the ensemble learning one, showing good predictive performance for the differentiation of melanoma and nevi (Precision = 0.9665, Recall = 0.9411, f1-score = 0.9536, ROC(AUC) = 0.9185) and melanoma and non-melanoma skin cancer (Precision = 0.9259, Recall = 0.8852, f1score = 0.9051, ROC(AUC) = 0.901). Conclusion: IRT imaging combined with deep learning techniques is promising for simplifying and accelerating the diagnosis of skin cancer. Significance: Despite ongoing awareness campaigns for skin cancer' risk factors, its incidence rate has continuously been growing worldwide, becoming a major public health issue. The standard first detection method - dermoscopy -, is largely experience-dependent and mostly used to assess melanocytic lesions. As infrared thermal imaging is an innocuous imaging technique that maps skin surface temperature, which may be associated to pathological states, e.g., tumorous lesions, it could be a potential aiding tool for all skin cancer conditions. The application of artificial intelligence methods to process the collected temperature data can save time and assist health care professionals with low experience levels in the diagnosis task. To the best of our knowledge, this is the first study where a data set of skin cancer thermograms is expanded and used for skin lesion differentiation with a deep learning approach.
id RCAP_891576b09b381b0f44e74ac4f1a677b8
oai_identifier_str oai:repositorio-aberto.up.pt:10216/134183
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Comparison of machine learning strategies for infrared thermography of skin cancerCiências Tecnológicas, Ciências médicas e da saúdeTechnological sciences, Medical and Health sciencesObjective: The aim of this work was to explore the potential of infrared thermal imaging as an aiding tool for the diagnosis of skin cancer lesions, using artificial intelligence methods. Methods: Thermal parameters of skin tumours were retrieved from thermograms and used as input features for two machine learning based strategies: ensemble learning and deep learning. Results: The deep learning strategy outperformed the ensemble learning one, showing good predictive performance for the differentiation of melanoma and nevi (Precision = 0.9665, Recall = 0.9411, f1-score = 0.9536, ROC(AUC) = 0.9185) and melanoma and non-melanoma skin cancer (Precision = 0.9259, Recall = 0.8852, f1score = 0.9051, ROC(AUC) = 0.901). Conclusion: IRT imaging combined with deep learning techniques is promising for simplifying and accelerating the diagnosis of skin cancer. Significance: Despite ongoing awareness campaigns for skin cancer' risk factors, its incidence rate has continuously been growing worldwide, becoming a major public health issue. The standard first detection method - dermoscopy -, is largely experience-dependent and mostly used to assess melanocytic lesions. As infrared thermal imaging is an innocuous imaging technique that maps skin surface temperature, which may be associated to pathological states, e.g., tumorous lesions, it could be a potential aiding tool for all skin cancer conditions. The application of artificial intelligence methods to process the collected temperature data can save time and assist health care professionals with low experience levels in the diagnosis task. To the best of our knowledge, this is the first study where a data set of skin cancer thermograms is expanded and used for skin lesion differentiation with a deep learning approach.2021-082021-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleimage/pngapplication/pdfhttps://hdl.handle.net/10216/134183eng1746-809410.1016/j.bspc.2021.102872Carolina MagalhãesJoão Manuel R. S. TavaresJoaquim MendesRicardo Vardascainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:47:02Zoai:repositorio-aberto.up.pt:10216/134183Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:32:03.506421Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Comparison of machine learning strategies for infrared thermography of skin cancer
title Comparison of machine learning strategies for infrared thermography of skin cancer
spellingShingle Comparison of machine learning strategies for infrared thermography of skin cancer
Carolina Magalhães
Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
title_short Comparison of machine learning strategies for infrared thermography of skin cancer
title_full Comparison of machine learning strategies for infrared thermography of skin cancer
title_fullStr Comparison of machine learning strategies for infrared thermography of skin cancer
title_full_unstemmed Comparison of machine learning strategies for infrared thermography of skin cancer
title_sort Comparison of machine learning strategies for infrared thermography of skin cancer
author Carolina Magalhães
author_facet Carolina Magalhães
João Manuel R. S. Tavares
Joaquim Mendes
Ricardo Vardasca
author_role author
author2 João Manuel R. S. Tavares
Joaquim Mendes
Ricardo Vardasca
author2_role author
author
author
dc.contributor.author.fl_str_mv Carolina Magalhães
João Manuel R. S. Tavares
Joaquim Mendes
Ricardo Vardasca
dc.subject.por.fl_str_mv Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
topic Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
description Objective: The aim of this work was to explore the potential of infrared thermal imaging as an aiding tool for the diagnosis of skin cancer lesions, using artificial intelligence methods. Methods: Thermal parameters of skin tumours were retrieved from thermograms and used as input features for two machine learning based strategies: ensemble learning and deep learning. Results: The deep learning strategy outperformed the ensemble learning one, showing good predictive performance for the differentiation of melanoma and nevi (Precision = 0.9665, Recall = 0.9411, f1-score = 0.9536, ROC(AUC) = 0.9185) and melanoma and non-melanoma skin cancer (Precision = 0.9259, Recall = 0.8852, f1score = 0.9051, ROC(AUC) = 0.901). Conclusion: IRT imaging combined with deep learning techniques is promising for simplifying and accelerating the diagnosis of skin cancer. Significance: Despite ongoing awareness campaigns for skin cancer' risk factors, its incidence rate has continuously been growing worldwide, becoming a major public health issue. The standard first detection method - dermoscopy -, is largely experience-dependent and mostly used to assess melanocytic lesions. As infrared thermal imaging is an innocuous imaging technique that maps skin surface temperature, which may be associated to pathological states, e.g., tumorous lesions, it could be a potential aiding tool for all skin cancer conditions. The application of artificial intelligence methods to process the collected temperature data can save time and assist health care professionals with low experience levels in the diagnosis task. To the best of our knowledge, this is the first study where a data set of skin cancer thermograms is expanded and used for skin lesion differentiation with a deep learning approach.
publishDate 2021
dc.date.none.fl_str_mv 2021-08
2021-08-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/134183
url https://hdl.handle.net/10216/134183
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1746-8094
10.1016/j.bspc.2021.102872
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv image/png
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136229949702144