Cherry extract from prunus avium L. To improve the resistance of endothelial cells to oxidative stress: Mucoadhesive chitosan vs. poly(lactic-co-glycolic acid) nanoparticles
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/136322 |
Resumo: | Polyphenolic compounds contained in cherry extract (CE) are well known for their antioxidant and anti-inflammatory properties. Unfortunately, most of these natural compounds have low oral bioavailability, reducing their widespread use. Here, different concentrations of polyphenol-rich CE from Tuscany (Italy), encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), were compared with those encapsulated in two NP types, different from each other in terms of mucoadhesivity, obtained with chitosan derivatives (Ch-der), regarding CE gastrointestinal (GI) permeability and protective effect on oxidative stress. Different NP systems were physico-chemically characterized, and the antioxidant GI permeability was evaluated in a triple-cell co-culture model (Caco-2/HT29-MTX/Raji B), resembling the intestine. PLGA NPs efficiently entrapped CE (up to 840 µg gallic acid equivalent (GAE)/mL) without altering size (210 nm), polydispersity index (0.05), or zeta potential (-10.7 mV). Such NPs promoted permeation of encapsulated CE at a CE polyphenolic concentration of at least 2 µg GAE/mL. More mucoadhesive NPs from Ch-der, coded quaternary ammonium S-protected thiolated chitosan (QA-Ch-S-pro) NP, promoted CE GI permeation of 0.5 µg GAE/mL. At higher concentrations of Ch-der polymers, the resulting NPs containing CE were toxic toward Caco-2 and HT29-MTX cells. CE protected human umbilical vein endothelial cells (HUVECs) from oxidative stress and maintained its activity when entrapped in PLGA NPs. CE encapsulated in QA-Ch-S-pro NP protected HUVECs from oxidative stress, even more effectively than non-encapsulated CE. Furthermore, mucoadhesive NPs from Ch-der were more effective antioxidant protectors than PLGA NPs, but less cytotoxic PLGA NPs could be more useful when comparatively high therapeutic antioxidant doses are needed. |
id |
RCAP_a7e8fd1170b19531960d6fc822056bf3 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/136322 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Cherry extract from prunus avium L. To improve the resistance of endothelial cells to oxidative stress: Mucoadhesive chitosan vs. poly(lactic-co-glycolic acid) nanoparticlesChitosan nanoparticlesHUVECsIntestinal permeabilityOxidative stressPLGA nanoparticlesPolyphenolsSweet cherry (Prunus avium L.)Polyphenolic compounds contained in cherry extract (CE) are well known for their antioxidant and anti-inflammatory properties. Unfortunately, most of these natural compounds have low oral bioavailability, reducing their widespread use. Here, different concentrations of polyphenol-rich CE from Tuscany (Italy), encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), were compared with those encapsulated in two NP types, different from each other in terms of mucoadhesivity, obtained with chitosan derivatives (Ch-der), regarding CE gastrointestinal (GI) permeability and protective effect on oxidative stress. Different NP systems were physico-chemically characterized, and the antioxidant GI permeability was evaluated in a triple-cell co-culture model (Caco-2/HT29-MTX/Raji B), resembling the intestine. PLGA NPs efficiently entrapped CE (up to 840 µg gallic acid equivalent (GAE)/mL) without altering size (210 nm), polydispersity index (0.05), or zeta potential (-10.7 mV). Such NPs promoted permeation of encapsulated CE at a CE polyphenolic concentration of at least 2 µg GAE/mL. More mucoadhesive NPs from Ch-der, coded quaternary ammonium S-protected thiolated chitosan (QA-Ch-S-pro) NP, promoted CE GI permeation of 0.5 µg GAE/mL. At higher concentrations of Ch-der polymers, the resulting NPs containing CE were toxic toward Caco-2 and HT29-MTX cells. CE protected human umbilical vein endothelial cells (HUVECs) from oxidative stress and maintained its activity when entrapped in PLGA NPs. CE encapsulated in QA-Ch-S-pro NP protected HUVECs from oxidative stress, even more effectively than non-encapsulated CE. Furthermore, mucoadhesive NPs from Ch-der were more effective antioxidant protectors than PLGA NPs, but less cytotoxic PLGA NPs could be more useful when comparatively high therapeutic antioxidant doses are needed.MDPI20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/136322eng1661-659610.3390/ijms20071759Beconcini, DFabiano, AStefano, RMacedo, MHFelice, FZambito, YSarmento, Binfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:51:25Zoai:repositorio-aberto.up.pt:10216/136322Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:33:50.452153Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Cherry extract from prunus avium L. To improve the resistance of endothelial cells to oxidative stress: Mucoadhesive chitosan vs. poly(lactic-co-glycolic acid) nanoparticles |
title |
Cherry extract from prunus avium L. To improve the resistance of endothelial cells to oxidative stress: Mucoadhesive chitosan vs. poly(lactic-co-glycolic acid) nanoparticles |
spellingShingle |
Cherry extract from prunus avium L. To improve the resistance of endothelial cells to oxidative stress: Mucoadhesive chitosan vs. poly(lactic-co-glycolic acid) nanoparticles Beconcini, D Chitosan nanoparticles HUVECs Intestinal permeability Oxidative stress PLGA nanoparticles Polyphenols Sweet cherry (Prunus avium L.) |
title_short |
Cherry extract from prunus avium L. To improve the resistance of endothelial cells to oxidative stress: Mucoadhesive chitosan vs. poly(lactic-co-glycolic acid) nanoparticles |
title_full |
Cherry extract from prunus avium L. To improve the resistance of endothelial cells to oxidative stress: Mucoadhesive chitosan vs. poly(lactic-co-glycolic acid) nanoparticles |
title_fullStr |
Cherry extract from prunus avium L. To improve the resistance of endothelial cells to oxidative stress: Mucoadhesive chitosan vs. poly(lactic-co-glycolic acid) nanoparticles |
title_full_unstemmed |
Cherry extract from prunus avium L. To improve the resistance of endothelial cells to oxidative stress: Mucoadhesive chitosan vs. poly(lactic-co-glycolic acid) nanoparticles |
title_sort |
Cherry extract from prunus avium L. To improve the resistance of endothelial cells to oxidative stress: Mucoadhesive chitosan vs. poly(lactic-co-glycolic acid) nanoparticles |
author |
Beconcini, D |
author_facet |
Beconcini, D Fabiano, A Stefano, R Macedo, MH Felice, F Zambito, Y Sarmento, B |
author_role |
author |
author2 |
Fabiano, A Stefano, R Macedo, MH Felice, F Zambito, Y Sarmento, B |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Beconcini, D Fabiano, A Stefano, R Macedo, MH Felice, F Zambito, Y Sarmento, B |
dc.subject.por.fl_str_mv |
Chitosan nanoparticles HUVECs Intestinal permeability Oxidative stress PLGA nanoparticles Polyphenols Sweet cherry (Prunus avium L.) |
topic |
Chitosan nanoparticles HUVECs Intestinal permeability Oxidative stress PLGA nanoparticles Polyphenols Sweet cherry (Prunus avium L.) |
description |
Polyphenolic compounds contained in cherry extract (CE) are well known for their antioxidant and anti-inflammatory properties. Unfortunately, most of these natural compounds have low oral bioavailability, reducing their widespread use. Here, different concentrations of polyphenol-rich CE from Tuscany (Italy), encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), were compared with those encapsulated in two NP types, different from each other in terms of mucoadhesivity, obtained with chitosan derivatives (Ch-der), regarding CE gastrointestinal (GI) permeability and protective effect on oxidative stress. Different NP systems were physico-chemically characterized, and the antioxidant GI permeability was evaluated in a triple-cell co-culture model (Caco-2/HT29-MTX/Raji B), resembling the intestine. PLGA NPs efficiently entrapped CE (up to 840 µg gallic acid equivalent (GAE)/mL) without altering size (210 nm), polydispersity index (0.05), or zeta potential (-10.7 mV). Such NPs promoted permeation of encapsulated CE at a CE polyphenolic concentration of at least 2 µg GAE/mL. More mucoadhesive NPs from Ch-der, coded quaternary ammonium S-protected thiolated chitosan (QA-Ch-S-pro) NP, promoted CE GI permeation of 0.5 µg GAE/mL. At higher concentrations of Ch-der polymers, the resulting NPs containing CE were toxic toward Caco-2 and HT29-MTX cells. CE protected human umbilical vein endothelial cells (HUVECs) from oxidative stress and maintained its activity when entrapped in PLGA NPs. CE encapsulated in QA-Ch-S-pro NP protected HUVECs from oxidative stress, even more effectively than non-encapsulated CE. Furthermore, mucoadhesive NPs from Ch-der were more effective antioxidant protectors than PLGA NPs, but less cytotoxic PLGA NPs could be more useful when comparatively high therapeutic antioxidant doses are needed. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/136322 |
url |
https://hdl.handle.net/10216/136322 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1661-6596 10.3390/ijms20071759 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136247418978304 |