Anti-inflammatory effect of cherry extract loaded in polymeric nanoparticles: Relevance of particle internalization in endothelial cells
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/137935 |
Resumo: | This study aimed at evaluating the anti-inflammatory effect of natural cherry extract (CE), either free or encapsulated in nanoparticles (NPs) based on chitosan derivatives (Ch-der) or poly(lactic-co-glycolic acid) (PLGA), on human umbilical vein endothelial cells (HUVEC). CE from Prunus avium L. was characterized for total polyphenols, flavonoids, and anthocyanins content. CE and CE-loaded NP cytotoxicity and protective effect on lipopolysaccharide (LPS)-stressed HUVEC were tested by water-soluble tetrazolium salt (WST-1) assay. Pro- and anti-inflammatory cytokines (TNF-a, IL-6, IL-10, and PGE2) released byHUVECwere quantified by enzyme-linked immunosorbent assay (ELISA). All NP types were internalized into HUVEC after 2 h incubation and promoted the anti-inflammatory effect of free CE at the concentration of 2 µg gallic acid equivalents (GAE)/mL. CE-loaded Ch-der NPs showed the highest in vitro uptake and anti-inflammatory activity, blunting the secretion of IL-6, TNF-a, and PGE2 cytokines. Moreover, all NPs reduced the production of nitric oxide and NLRP3 inflammasome, and had a stronger anti-inflammatory effect than the major corticosteroid dexamethasone. In particular, the results demonstrate that natural CE protects endothelial cells from inflammatory stress when encapsulated in NPs based on quaternary ammonium chitosan. The CE beneficial effects were directly related with in vitro internalization of CE-loaded NPs. |
id |
RCAP_c10a36c46b2a21996ed5cd1ff051e2fe |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/137935 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Anti-inflammatory effect of cherry extract loaded in polymeric nanoparticles: Relevance of particle internalization in endothelial cellsHUVECInflammationNanoparticlesNLRP3 inflammasomePolyphenolsSweet cherry (prunus avium L.)This study aimed at evaluating the anti-inflammatory effect of natural cherry extract (CE), either free or encapsulated in nanoparticles (NPs) based on chitosan derivatives (Ch-der) or poly(lactic-co-glycolic acid) (PLGA), on human umbilical vein endothelial cells (HUVEC). CE from Prunus avium L. was characterized for total polyphenols, flavonoids, and anthocyanins content. CE and CE-loaded NP cytotoxicity and protective effect on lipopolysaccharide (LPS)-stressed HUVEC were tested by water-soluble tetrazolium salt (WST-1) assay. Pro- and anti-inflammatory cytokines (TNF-a, IL-6, IL-10, and PGE2) released byHUVECwere quantified by enzyme-linked immunosorbent assay (ELISA). All NP types were internalized into HUVEC after 2 h incubation and promoted the anti-inflammatory effect of free CE at the concentration of 2 µg gallic acid equivalents (GAE)/mL. CE-loaded Ch-der NPs showed the highest in vitro uptake and anti-inflammatory activity, blunting the secretion of IL-6, TNF-a, and PGE2 cytokines. Moreover, all NPs reduced the production of nitric oxide and NLRP3 inflammasome, and had a stronger anti-inflammatory effect than the major corticosteroid dexamethasone. In particular, the results demonstrate that natural CE protects endothelial cells from inflammatory stress when encapsulated in NPs based on quaternary ammonium chitosan. The CE beneficial effects were directly related with in vitro internalization of CE-loaded NPs.MDPI20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/137935eng1999-492310.3390/pharmaceutics11100500Beconcini, DFelice, FZambito, YFabiano, APiras, AMacedo, MHSarmento, BDi, Stefano, Rinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:41:49Zoai:repositorio-aberto.up.pt:10216/137935Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:45:55.142540Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Anti-inflammatory effect of cherry extract loaded in polymeric nanoparticles: Relevance of particle internalization in endothelial cells |
title |
Anti-inflammatory effect of cherry extract loaded in polymeric nanoparticles: Relevance of particle internalization in endothelial cells |
spellingShingle |
Anti-inflammatory effect of cherry extract loaded in polymeric nanoparticles: Relevance of particle internalization in endothelial cells Beconcini, D HUVEC Inflammation Nanoparticles NLRP3 inflammasome Polyphenols Sweet cherry (prunus avium L.) |
title_short |
Anti-inflammatory effect of cherry extract loaded in polymeric nanoparticles: Relevance of particle internalization in endothelial cells |
title_full |
Anti-inflammatory effect of cherry extract loaded in polymeric nanoparticles: Relevance of particle internalization in endothelial cells |
title_fullStr |
Anti-inflammatory effect of cherry extract loaded in polymeric nanoparticles: Relevance of particle internalization in endothelial cells |
title_full_unstemmed |
Anti-inflammatory effect of cherry extract loaded in polymeric nanoparticles: Relevance of particle internalization in endothelial cells |
title_sort |
Anti-inflammatory effect of cherry extract loaded in polymeric nanoparticles: Relevance of particle internalization in endothelial cells |
author |
Beconcini, D |
author_facet |
Beconcini, D Felice, F Zambito, Y Fabiano, A Piras, A Macedo, MH Sarmento, B Di, Stefano, R |
author_role |
author |
author2 |
Felice, F Zambito, Y Fabiano, A Piras, A Macedo, MH Sarmento, B Di, Stefano, R |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Beconcini, D Felice, F Zambito, Y Fabiano, A Piras, A Macedo, MH Sarmento, B Di, Stefano, R |
dc.subject.por.fl_str_mv |
HUVEC Inflammation Nanoparticles NLRP3 inflammasome Polyphenols Sweet cherry (prunus avium L.) |
topic |
HUVEC Inflammation Nanoparticles NLRP3 inflammasome Polyphenols Sweet cherry (prunus avium L.) |
description |
This study aimed at evaluating the anti-inflammatory effect of natural cherry extract (CE), either free or encapsulated in nanoparticles (NPs) based on chitosan derivatives (Ch-der) or poly(lactic-co-glycolic acid) (PLGA), on human umbilical vein endothelial cells (HUVEC). CE from Prunus avium L. was characterized for total polyphenols, flavonoids, and anthocyanins content. CE and CE-loaded NP cytotoxicity and protective effect on lipopolysaccharide (LPS)-stressed HUVEC were tested by water-soluble tetrazolium salt (WST-1) assay. Pro- and anti-inflammatory cytokines (TNF-a, IL-6, IL-10, and PGE2) released byHUVECwere quantified by enzyme-linked immunosorbent assay (ELISA). All NP types were internalized into HUVEC after 2 h incubation and promoted the anti-inflammatory effect of free CE at the concentration of 2 µg gallic acid equivalents (GAE)/mL. CE-loaded Ch-der NPs showed the highest in vitro uptake and anti-inflammatory activity, blunting the secretion of IL-6, TNF-a, and PGE2 cytokines. Moreover, all NPs reduced the production of nitric oxide and NLRP3 inflammasome, and had a stronger anti-inflammatory effect than the major corticosteroid dexamethasone. In particular, the results demonstrate that natural CE protects endothelial cells from inflammatory stress when encapsulated in NPs based on quaternary ammonium chitosan. The CE beneficial effects were directly related with in vitro internalization of CE-loaded NPs. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/137935 |
url |
https://hdl.handle.net/10216/137935 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1999-4923 10.3390/pharmaceutics11100500 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135776696434688 |