Lavandula luisieri and Lavandula viridis essential oils as upcoming anti-protozoal agents: A key focus on leishmaniasis

Detalhes bibliográficos
Autor(a) principal: Machado, M
Data de Publicação: 2019
Outros Autores: Martins, N, Salgueiro, L, Cavaleiro, C, Sousa, MC
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/136242
Resumo: Background and objectives: Leishmania species is the causative agent of leishmaniasis, a broad-spectrum clinical condition that can even be life-threatening when neglected. Current therapeutic strategies, despite beings highly cost-effective, have been increasingly associated with the appearance of drug-resistant microorganisms. Thus, an increasing number of thorough studies are needed towards upcoming drug discovery. This study aims to reveal the anti-protozoa activity of Lavandula luisieri and Lavandula viridis essential oils (EO) and their main components (1,8-cineole, linalool, and borneol). Materials and Methods: L. luisieri and L. viridis EO and their main components' leishmanicidal effects were tested in vitro against Leishmania infantum, Leishmania major, and Leishmania tropica strains. Cell viability effects were estimated by using the tetrazolium-dye (MTT) colorimetric method, morphological changes were assessed by scanning electron microscopy (SEM) and ultrastructural investigation by transmission electronic microscopy (TEM). Phosphatidylserine externalization, mitochondrial membrane potential (MMP), and cathepsin D activity assessment were also carried out. Finally, cytotoxic activity of the studied matrices was also determined in mammalian cells. Results: Plant-studied EO exhibited prominent anti-Leishmania effects (IC50 = 31-263 µg/mL), with L. luisieri being the most active one. At concentrations corresponding to IC50 values, EO-exposed L. infantum promastigotes suffered marked ultrastructural modifications. The presence of aberrant-shaped cells, mitochondrial and kinetoplast swelling, and autophagosomal structures were the most common evidenced changes. L. luisieri EO exerted its leishmanicidal activity through different mechanisms, but mainly through unleashing apoptosis. Phosphatidylserine externalization, mitochondrial membrane potential loss, and cell-cycle arrest at G(0)/G(1) phase were the most remarkable apoptosis-mediated aspects. Inhibition of cathepsin D activity was also observed. No toxic effects were found on macrophage cells. Conclusions: L. luisieri seems to be an upcoming source of bioactive molecules for leishmaniasis control and to find leading molecules for new drugs formulation against Leishmania infections.
id RCAP_a9596470f7556245be50d7e867a87cf3
oai_identifier_str oai:repositorio-aberto.up.pt:10216/136242
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Lavandula luisieri and Lavandula viridis essential oils as upcoming anti-protozoal agents: A key focus on leishmaniasisAnti-Leishmania activityDrug developmentEssential oilFlow cytometryLavandula spp.Background and objectives: Leishmania species is the causative agent of leishmaniasis, a broad-spectrum clinical condition that can even be life-threatening when neglected. Current therapeutic strategies, despite beings highly cost-effective, have been increasingly associated with the appearance of drug-resistant microorganisms. Thus, an increasing number of thorough studies are needed towards upcoming drug discovery. This study aims to reveal the anti-protozoa activity of Lavandula luisieri and Lavandula viridis essential oils (EO) and their main components (1,8-cineole, linalool, and borneol). Materials and Methods: L. luisieri and L. viridis EO and their main components' leishmanicidal effects were tested in vitro against Leishmania infantum, Leishmania major, and Leishmania tropica strains. Cell viability effects were estimated by using the tetrazolium-dye (MTT) colorimetric method, morphological changes were assessed by scanning electron microscopy (SEM) and ultrastructural investigation by transmission electronic microscopy (TEM). Phosphatidylserine externalization, mitochondrial membrane potential (MMP), and cathepsin D activity assessment were also carried out. Finally, cytotoxic activity of the studied matrices was also determined in mammalian cells. Results: Plant-studied EO exhibited prominent anti-Leishmania effects (IC50 = 31-263 µg/mL), with L. luisieri being the most active one. At concentrations corresponding to IC50 values, EO-exposed L. infantum promastigotes suffered marked ultrastructural modifications. The presence of aberrant-shaped cells, mitochondrial and kinetoplast swelling, and autophagosomal structures were the most common evidenced changes. L. luisieri EO exerted its leishmanicidal activity through different mechanisms, but mainly through unleashing apoptosis. Phosphatidylserine externalization, mitochondrial membrane potential loss, and cell-cycle arrest at G(0)/G(1) phase were the most remarkable apoptosis-mediated aspects. Inhibition of cathepsin D activity was also observed. No toxic effects were found on macrophage cells. Conclusions: L. luisieri seems to be an upcoming source of bioactive molecules for leishmaniasis control and to find leading molecules for new drugs formulation against Leishmania infections.MDPI20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/136242eng2076-341710.3390/app9153056Machado, MMartins, NSalgueiro, LCavaleiro, CSousa, MCinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:08:14Zoai:repositorio-aberto.up.pt:10216/136242Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:16:29.685555Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Lavandula luisieri and Lavandula viridis essential oils as upcoming anti-protozoal agents: A key focus on leishmaniasis
title Lavandula luisieri and Lavandula viridis essential oils as upcoming anti-protozoal agents: A key focus on leishmaniasis
spellingShingle Lavandula luisieri and Lavandula viridis essential oils as upcoming anti-protozoal agents: A key focus on leishmaniasis
Machado, M
Anti-Leishmania activity
Drug development
Essential oil
Flow cytometry
Lavandula spp.
title_short Lavandula luisieri and Lavandula viridis essential oils as upcoming anti-protozoal agents: A key focus on leishmaniasis
title_full Lavandula luisieri and Lavandula viridis essential oils as upcoming anti-protozoal agents: A key focus on leishmaniasis
title_fullStr Lavandula luisieri and Lavandula viridis essential oils as upcoming anti-protozoal agents: A key focus on leishmaniasis
title_full_unstemmed Lavandula luisieri and Lavandula viridis essential oils as upcoming anti-protozoal agents: A key focus on leishmaniasis
title_sort Lavandula luisieri and Lavandula viridis essential oils as upcoming anti-protozoal agents: A key focus on leishmaniasis
author Machado, M
author_facet Machado, M
Martins, N
Salgueiro, L
Cavaleiro, C
Sousa, MC
author_role author
author2 Martins, N
Salgueiro, L
Cavaleiro, C
Sousa, MC
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Machado, M
Martins, N
Salgueiro, L
Cavaleiro, C
Sousa, MC
dc.subject.por.fl_str_mv Anti-Leishmania activity
Drug development
Essential oil
Flow cytometry
Lavandula spp.
topic Anti-Leishmania activity
Drug development
Essential oil
Flow cytometry
Lavandula spp.
description Background and objectives: Leishmania species is the causative agent of leishmaniasis, a broad-spectrum clinical condition that can even be life-threatening when neglected. Current therapeutic strategies, despite beings highly cost-effective, have been increasingly associated with the appearance of drug-resistant microorganisms. Thus, an increasing number of thorough studies are needed towards upcoming drug discovery. This study aims to reveal the anti-protozoa activity of Lavandula luisieri and Lavandula viridis essential oils (EO) and their main components (1,8-cineole, linalool, and borneol). Materials and Methods: L. luisieri and L. viridis EO and their main components' leishmanicidal effects were tested in vitro against Leishmania infantum, Leishmania major, and Leishmania tropica strains. Cell viability effects were estimated by using the tetrazolium-dye (MTT) colorimetric method, morphological changes were assessed by scanning electron microscopy (SEM) and ultrastructural investigation by transmission electronic microscopy (TEM). Phosphatidylserine externalization, mitochondrial membrane potential (MMP), and cathepsin D activity assessment were also carried out. Finally, cytotoxic activity of the studied matrices was also determined in mammalian cells. Results: Plant-studied EO exhibited prominent anti-Leishmania effects (IC50 = 31-263 µg/mL), with L. luisieri being the most active one. At concentrations corresponding to IC50 values, EO-exposed L. infantum promastigotes suffered marked ultrastructural modifications. The presence of aberrant-shaped cells, mitochondrial and kinetoplast swelling, and autophagosomal structures were the most common evidenced changes. L. luisieri EO exerted its leishmanicidal activity through different mechanisms, but mainly through unleashing apoptosis. Phosphatidylserine externalization, mitochondrial membrane potential loss, and cell-cycle arrest at G(0)/G(1) phase were the most remarkable apoptosis-mediated aspects. Inhibition of cathepsin D activity was also observed. No toxic effects were found on macrophage cells. Conclusions: L. luisieri seems to be an upcoming source of bioactive molecules for leishmaniasis control and to find leading molecules for new drugs formulation against Leishmania infections.
publishDate 2019
dc.date.none.fl_str_mv 2019
2019-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/136242
url https://hdl.handle.net/10216/136242
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2076-3417
10.3390/app9153056
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136085135065088