Modernising customer service in retail: A Worten case study on automated complaint classification

Detalhes bibliográficos
Autor(a) principal: Casimiro, Inês Rodrigues
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/30263
Resumo: The emergence of retailers able to deliver products on the same day and at very competitive prices, such as Amazon, has caused customers to raise their expectations. When the quality of service falls short of the expected, customers resort to complaints to show their dissatisfaction, and it is in the retailers' interest to resolve the problem as quickly as possible to avoid losing customers. Since the process of analysing complaints is very time-consuming, this study aims to propose a method for classifying the complaints addressed to Worten, automatically. Thus, sixteen experiments were performed with eight different Machine Learning (ML) algorithms, following the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology. The experiments included reducing the number of classes, Transfer Learning models, and different types of class balancing, among others. The Support Vector Machine (SVM) model obtained the best classification, with an Accuracy of 71.41%, in the experiment in which the three most diffuse of the six original classes (Time, Technical Problem, Client, Money, Service and Other) were eliminated.
id RCAP_a9a62ee740a46129dabdaa4fdb1f53bc
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/30263
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Modernising customer service in retail: A Worten case study on automated complaint classificationWortenElectronics retailComplaintsMachine learningProcessamento de linguagem natural - -- NLP Natural language processingText classificationRetalho de eletrónicaReclamaçõesClassificação de textoThe emergence of retailers able to deliver products on the same day and at very competitive prices, such as Amazon, has caused customers to raise their expectations. When the quality of service falls short of the expected, customers resort to complaints to show their dissatisfaction, and it is in the retailers' interest to resolve the problem as quickly as possible to avoid losing customers. Since the process of analysing complaints is very time-consuming, this study aims to propose a method for classifying the complaints addressed to Worten, automatically. Thus, sixteen experiments were performed with eight different Machine Learning (ML) algorithms, following the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology. The experiments included reducing the number of classes, Transfer Learning models, and different types of class balancing, among others. The Support Vector Machine (SVM) model obtained the best classification, with an Accuracy of 71.41%, in the experiment in which the three most diffuse of the six original classes (Time, Technical Problem, Client, Money, Service and Other) were eliminated.O aparecimento de retalhistas com capacidade de entregar produtos no próprio dia e a preços muito competitivos, como a Amazon, levou a um aumento de expectativas por parte dos clientes. Quando a qualidade do serviço praticado fica aquém do esperado, os clientes recorrem a reclamações para demonstrar o seu descontentamento, e é do interesse dos retalhistas resolver o problema o mais rápido possível para evitar perder clientes. Uma vez que o processo de análise de reclamações consome bastante tempo, este estudo visa propor um método de classificar as reclamações endereçadas à Worten, de forma automática. Assim, foram realizadas dezasseis experiências com oito algoritmos de Machine Learning (ML) diferentes, seguindo a metodologia Cross Industry Standard Process for Data Mining (CRISP-DM). As experiências efetuadas compreenderam a redução do número de classes, modelos de Transfer Learning, diferentes tipos de balanceamento de classes, entre outros. O modelo Support Vector Machine (SVM) obteve a melhor classificação, com uma Acurácia de 71,41%, na experiência em que foram eliminadas as três classes mais difusas das seis classes originais (Time, Technical Problem, Client, Money, Service e Other).2024-01-08T16:23:31Z2023-12-19T00:00:00Z2023-12-192023-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/30263TID:203436784engCasimiro, Inês Rodriguesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-14T01:17:45Zoai:repositorio.iscte-iul.pt:10071/30263Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:40:25.865517Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Modernising customer service in retail: A Worten case study on automated complaint classification
title Modernising customer service in retail: A Worten case study on automated complaint classification
spellingShingle Modernising customer service in retail: A Worten case study on automated complaint classification
Casimiro, Inês Rodrigues
Worten
Electronics retail
Complaints
Machine learning
Processamento de linguagem natural - -- NLP Natural language processing
Text classification
Retalho de eletrónica
Reclamações
Classificação de texto
title_short Modernising customer service in retail: A Worten case study on automated complaint classification
title_full Modernising customer service in retail: A Worten case study on automated complaint classification
title_fullStr Modernising customer service in retail: A Worten case study on automated complaint classification
title_full_unstemmed Modernising customer service in retail: A Worten case study on automated complaint classification
title_sort Modernising customer service in retail: A Worten case study on automated complaint classification
author Casimiro, Inês Rodrigues
author_facet Casimiro, Inês Rodrigues
author_role author
dc.contributor.author.fl_str_mv Casimiro, Inês Rodrigues
dc.subject.por.fl_str_mv Worten
Electronics retail
Complaints
Machine learning
Processamento de linguagem natural - -- NLP Natural language processing
Text classification
Retalho de eletrónica
Reclamações
Classificação de texto
topic Worten
Electronics retail
Complaints
Machine learning
Processamento de linguagem natural - -- NLP Natural language processing
Text classification
Retalho de eletrónica
Reclamações
Classificação de texto
description The emergence of retailers able to deliver products on the same day and at very competitive prices, such as Amazon, has caused customers to raise their expectations. When the quality of service falls short of the expected, customers resort to complaints to show their dissatisfaction, and it is in the retailers' interest to resolve the problem as quickly as possible to avoid losing customers. Since the process of analysing complaints is very time-consuming, this study aims to propose a method for classifying the complaints addressed to Worten, automatically. Thus, sixteen experiments were performed with eight different Machine Learning (ML) algorithms, following the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology. The experiments included reducing the number of classes, Transfer Learning models, and different types of class balancing, among others. The Support Vector Machine (SVM) model obtained the best classification, with an Accuracy of 71.41%, in the experiment in which the three most diffuse of the six original classes (Time, Technical Problem, Client, Money, Service and Other) were eliminated.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-19T00:00:00Z
2023-12-19
2023-10
2024-01-08T16:23:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/30263
TID:203436784
url http://hdl.handle.net/10071/30263
identifier_str_mv TID:203436784
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136893438263296