Modernising customer service in retail: A Worten case study on automated complaint classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/30263 |
Resumo: | The emergence of retailers able to deliver products on the same day and at very competitive prices, such as Amazon, has caused customers to raise their expectations. When the quality of service falls short of the expected, customers resort to complaints to show their dissatisfaction, and it is in the retailers' interest to resolve the problem as quickly as possible to avoid losing customers. Since the process of analysing complaints is very time-consuming, this study aims to propose a method for classifying the complaints addressed to Worten, automatically. Thus, sixteen experiments were performed with eight different Machine Learning (ML) algorithms, following the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology. The experiments included reducing the number of classes, Transfer Learning models, and different types of class balancing, among others. The Support Vector Machine (SVM) model obtained the best classification, with an Accuracy of 71.41%, in the experiment in which the three most diffuse of the six original classes (Time, Technical Problem, Client, Money, Service and Other) were eliminated. |
id |
RCAP_a9a62ee740a46129dabdaa4fdb1f53bc |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/30263 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modernising customer service in retail: A Worten case study on automated complaint classificationWortenElectronics retailComplaintsMachine learningProcessamento de linguagem natural - -- NLP Natural language processingText classificationRetalho de eletrónicaReclamaçõesClassificação de textoThe emergence of retailers able to deliver products on the same day and at very competitive prices, such as Amazon, has caused customers to raise their expectations. When the quality of service falls short of the expected, customers resort to complaints to show their dissatisfaction, and it is in the retailers' interest to resolve the problem as quickly as possible to avoid losing customers. Since the process of analysing complaints is very time-consuming, this study aims to propose a method for classifying the complaints addressed to Worten, automatically. Thus, sixteen experiments were performed with eight different Machine Learning (ML) algorithms, following the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology. The experiments included reducing the number of classes, Transfer Learning models, and different types of class balancing, among others. The Support Vector Machine (SVM) model obtained the best classification, with an Accuracy of 71.41%, in the experiment in which the three most diffuse of the six original classes (Time, Technical Problem, Client, Money, Service and Other) were eliminated.O aparecimento de retalhistas com capacidade de entregar produtos no próprio dia e a preços muito competitivos, como a Amazon, levou a um aumento de expectativas por parte dos clientes. Quando a qualidade do serviço praticado fica aquém do esperado, os clientes recorrem a reclamações para demonstrar o seu descontentamento, e é do interesse dos retalhistas resolver o problema o mais rápido possível para evitar perder clientes. Uma vez que o processo de análise de reclamações consome bastante tempo, este estudo visa propor um método de classificar as reclamações endereçadas à Worten, de forma automática. Assim, foram realizadas dezasseis experiências com oito algoritmos de Machine Learning (ML) diferentes, seguindo a metodologia Cross Industry Standard Process for Data Mining (CRISP-DM). As experiências efetuadas compreenderam a redução do número de classes, modelos de Transfer Learning, diferentes tipos de balanceamento de classes, entre outros. O modelo Support Vector Machine (SVM) obteve a melhor classificação, com uma Acurácia de 71,41%, na experiência em que foram eliminadas as três classes mais difusas das seis classes originais (Time, Technical Problem, Client, Money, Service e Other).2024-01-08T16:23:31Z2023-12-19T00:00:00Z2023-12-192023-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/30263TID:203436784engCasimiro, Inês Rodriguesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-14T01:17:45Zoai:repositorio.iscte-iul.pt:10071/30263Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:40:25.865517Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modernising customer service in retail: A Worten case study on automated complaint classification |
title |
Modernising customer service in retail: A Worten case study on automated complaint classification |
spellingShingle |
Modernising customer service in retail: A Worten case study on automated complaint classification Casimiro, Inês Rodrigues Worten Electronics retail Complaints Machine learning Processamento de linguagem natural - -- NLP Natural language processing Text classification Retalho de eletrónica Reclamações Classificação de texto |
title_short |
Modernising customer service in retail: A Worten case study on automated complaint classification |
title_full |
Modernising customer service in retail: A Worten case study on automated complaint classification |
title_fullStr |
Modernising customer service in retail: A Worten case study on automated complaint classification |
title_full_unstemmed |
Modernising customer service in retail: A Worten case study on automated complaint classification |
title_sort |
Modernising customer service in retail: A Worten case study on automated complaint classification |
author |
Casimiro, Inês Rodrigues |
author_facet |
Casimiro, Inês Rodrigues |
author_role |
author |
dc.contributor.author.fl_str_mv |
Casimiro, Inês Rodrigues |
dc.subject.por.fl_str_mv |
Worten Electronics retail Complaints Machine learning Processamento de linguagem natural - -- NLP Natural language processing Text classification Retalho de eletrónica Reclamações Classificação de texto |
topic |
Worten Electronics retail Complaints Machine learning Processamento de linguagem natural - -- NLP Natural language processing Text classification Retalho de eletrónica Reclamações Classificação de texto |
description |
The emergence of retailers able to deliver products on the same day and at very competitive prices, such as Amazon, has caused customers to raise their expectations. When the quality of service falls short of the expected, customers resort to complaints to show their dissatisfaction, and it is in the retailers' interest to resolve the problem as quickly as possible to avoid losing customers. Since the process of analysing complaints is very time-consuming, this study aims to propose a method for classifying the complaints addressed to Worten, automatically. Thus, sixteen experiments were performed with eight different Machine Learning (ML) algorithms, following the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology. The experiments included reducing the number of classes, Transfer Learning models, and different types of class balancing, among others. The Support Vector Machine (SVM) model obtained the best classification, with an Accuracy of 71.41%, in the experiment in which the three most diffuse of the six original classes (Time, Technical Problem, Client, Money, Service and Other) were eliminated. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-19T00:00:00Z 2023-12-19 2023-10 2024-01-08T16:23:31Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/30263 TID:203436784 |
url |
http://hdl.handle.net/10071/30263 |
identifier_str_mv |
TID:203436784 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136893438263296 |