Ensemble classifiers in remote sensing: a comparative analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/11671 |
Resumo: | Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies. |
id |
RCAP_ab7b33ad5d6cdc16d4e15da47d9f2bc1 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/11671 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Ensemble classifiers in remote sensing: a comparative analysisAccuracyBaggingBoostingCARTClassifiers EnsembleLand Cover and Land Use MapsLinear Discriminant ClassifierMajority VotingNeural NetworksRandom ForestDissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Land Cover and Land Use (LCLU) maps are very important tools for understanding the relationships between human activities and the natural environment. Defining accurately all the features over the Earth's surface is essential to assure their management properly. The basic data which are being used to derive those maps are remote sensing imagery (RSI), and concretely, satellite images. Hence, new techniques and methods able to deal with those data and at the same time, do it accurately, have been demanded. In this work, our goal was to have a brief review over some of the currently approaches in the scientific community to face this challenge, to get higher accuracy in LCLU maps. Although, we will be focus on the study of the classifiers ensembles and the different strategies that those ensembles present in the literature. We have proposed different ensembles strategies based in our data and previous work, in order to increase the accuracy of previous LCLU maps made by using the same data and single classifiers. Finally, only one of the ensembles proposed have got significantly higher accuracy, in the classification of LCLU map, than the better single classifier performance with the same data. Also, it was proved that diversity did not play an important role in the success of this ensemble.Rengel, ReyesCaetano, Mário Sílvio Rochinha de AndradeHenriques, Roberto André PereiraRUNRodríguez, Hernán Cortés2014-03-18T13:34:25Z2014-03-062014-03-06T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/11671TID:201392585enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:15:37Zoai:run.unl.pt:10362/11671Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:15:37Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Ensemble classifiers in remote sensing: a comparative analysis |
title |
Ensemble classifiers in remote sensing: a comparative analysis |
spellingShingle |
Ensemble classifiers in remote sensing: a comparative analysis Rodríguez, Hernán Cortés Accuracy Bagging Boosting CART Classifiers Ensemble Land Cover and Land Use Maps Linear Discriminant Classifier Majority Voting Neural Networks Random Forest |
title_short |
Ensemble classifiers in remote sensing: a comparative analysis |
title_full |
Ensemble classifiers in remote sensing: a comparative analysis |
title_fullStr |
Ensemble classifiers in remote sensing: a comparative analysis |
title_full_unstemmed |
Ensemble classifiers in remote sensing: a comparative analysis |
title_sort |
Ensemble classifiers in remote sensing: a comparative analysis |
author |
Rodríguez, Hernán Cortés |
author_facet |
Rodríguez, Hernán Cortés |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rengel, Reyes Caetano, Mário Sílvio Rochinha de Andrade Henriques, Roberto André Pereira RUN |
dc.contributor.author.fl_str_mv |
Rodríguez, Hernán Cortés |
dc.subject.por.fl_str_mv |
Accuracy Bagging Boosting CART Classifiers Ensemble Land Cover and Land Use Maps Linear Discriminant Classifier Majority Voting Neural Networks Random Forest |
topic |
Accuracy Bagging Boosting CART Classifiers Ensemble Land Cover and Land Use Maps Linear Discriminant Classifier Majority Voting Neural Networks Random Forest |
description |
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03-18T13:34:25Z 2014-03-06 2014-03-06T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/11671 TID:201392585 |
url |
http://hdl.handle.net/10362/11671 |
identifier_str_mv |
TID:201392585 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545509926076416 |