Ensembles na classificação relacional

Detalhes bibliográficos
Autor(a) principal: Llerena, Nils Ever Murrugarra
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102011-095113/
Resumo: Em diversos domínios, além das informações sobre os objetos ou entidades que os compõem, existem, também, informaçõoes a respeito das relações entre esses objetos. Alguns desses domínios são, por exemplo, as redes de co-autoria, e as páginas Web. Nesse sentido, é natural procurar por técnicas de classificação que levem em conta estas informações. Dentre essas técnicas estão as denominadas classificação baseada em grafos, que visam classificar os exemplos levando em conta as relações existentes entre eles. Este trabalho aborda o desenvolvimento de métodos para melhorar o desempenho de classificadores baseados em grafos utilizando estratégias de ensembles. Um classificador ensemble considera um conjunto de classificadores cujas predições individuais são combinadas de alguma forma. Este classificador normalmente apresenta um melhor desempenho do que seus classificadores individualmente. Assim, foram desenvolvidas três técnicas: a primeira para dados originalmente no formato proposicional e transformados para formato relacional baseado em grafo e a segunda e terceira para dados originalmente já no formato de grafo. A primeira técnica, inspirada no algoritmo de boosting, originou o algoritmo KNN Adaptativo Baseado em Grafos (A-KNN). A segunda ténica, inspirada no algoritmo de Bagging originou trê abordagens de Bagging Baseado em Grafos (BG). Finalmente, a terceira técnica, inspirada no algoritmo de Cross-Validated Committees, originou o Cross-Validated Committees Baseado em Grafos (CVCG). Os experimentos foram realizados em 38 conjuntos de dados, sendo 22 conjuntos proposicionais e 16 conjuntos no formato relacional. Na avaliação foi utilizado o esquema de 10-fold stratified cross-validation e para determinar diferenças estatísticas entre classificadores foi utilizado o método proposto por Demsar (2006). Em relação aos resultados, as três técnicas melhoraram ou mantiveram o desempenho dos classificadores bases. Concluindo, ensembles aplicados em classificadores baseados em grafos apresentam bons resultados no desempenho destes
id USP_cf1b974cd746cfb539646d5695292e49
oai_identifier_str oai:teses.usp.br:tde-18102011-095113
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Ensembles na classificação relacionalEnsembles in relational classificationAprendizado de máquinaBaggingBaggingBoostingBoostingClassificadores baseados em grafosEnsemblesEnsemblesGraph-based classifiersMachine learningEm diversos domínios, além das informações sobre os objetos ou entidades que os compõem, existem, também, informaçõoes a respeito das relações entre esses objetos. Alguns desses domínios são, por exemplo, as redes de co-autoria, e as páginas Web. Nesse sentido, é natural procurar por técnicas de classificação que levem em conta estas informações. Dentre essas técnicas estão as denominadas classificação baseada em grafos, que visam classificar os exemplos levando em conta as relações existentes entre eles. Este trabalho aborda o desenvolvimento de métodos para melhorar o desempenho de classificadores baseados em grafos utilizando estratégias de ensembles. Um classificador ensemble considera um conjunto de classificadores cujas predições individuais são combinadas de alguma forma. Este classificador normalmente apresenta um melhor desempenho do que seus classificadores individualmente. Assim, foram desenvolvidas três técnicas: a primeira para dados originalmente no formato proposicional e transformados para formato relacional baseado em grafo e a segunda e terceira para dados originalmente já no formato de grafo. A primeira técnica, inspirada no algoritmo de boosting, originou o algoritmo KNN Adaptativo Baseado em Grafos (A-KNN). A segunda ténica, inspirada no algoritmo de Bagging originou trê abordagens de Bagging Baseado em Grafos (BG). Finalmente, a terceira técnica, inspirada no algoritmo de Cross-Validated Committees, originou o Cross-Validated Committees Baseado em Grafos (CVCG). Os experimentos foram realizados em 38 conjuntos de dados, sendo 22 conjuntos proposicionais e 16 conjuntos no formato relacional. Na avaliação foi utilizado o esquema de 10-fold stratified cross-validation e para determinar diferenças estatísticas entre classificadores foi utilizado o método proposto por Demsar (2006). Em relação aos resultados, as três técnicas melhoraram ou mantiveram o desempenho dos classificadores bases. Concluindo, ensembles aplicados em classificadores baseados em grafos apresentam bons resultados no desempenho destesIn many fields, besides information about the objects or entities that compose them, there is also information about the relationships between objects. Some of these fields are, for example, co-authorship networks and Web pages. Therefore, it is natural to search for classification techniques that take into account this information. Among these techniques are the so-called graphbased classification, which seek to classify examples taking into account the relationships between them. This paper presents the development of methods to improve the performance of graph-based classifiers by using strategies of ensembles. An ensemble classifier considers a set of classifiers whose individual predictions are combined in some way. This combined classifier usually performs better than its individual classifiers. Three techniques have been developed: the first applied for originally propositional data transformed to relational format based on graphs and the second and the third applied for data originally in graph format. The first technique, inspired by the boosting algorithm originated the Adaptive Graph-Based K-Nearest Neighbor (A-KNN). The second technique, inspired by the bagging algorithm led to three approaches of Graph-Based Bagging (BG). Finally the third technique, inspired by the Cross- Validated Committees algorithm led to the Graph-Based Cross-Validated Committees (CVCG). The experiments were performed on 38 data sets, 22 datasets in propositional format and 16 in relational format. Evaluation was performed using the scheme of 10-fold stratified cross-validation and to determine statistical differences between the classifiers it was used the method proposed by Demsar (2006). Regarding the results, these three techniques improved or at least maintain the performance of the base classifiers. In conclusion, ensembles applied to graph-based classifiers have good results in the performance of themBiblioteca Digitais de Teses e Dissertações da USPLopes, Alneu de AndradeLlerena, Nils Ever Murrugarra2011-09-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102011-095113/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:30Zoai:teses.usp.br:tde-18102011-095113Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:30Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Ensembles na classificação relacional
Ensembles in relational classification
title Ensembles na classificação relacional
spellingShingle Ensembles na classificação relacional
Llerena, Nils Ever Murrugarra
Aprendizado de máquina
Bagging
Bagging
Boosting
Boosting
Classificadores baseados em grafos
Ensembles
Ensembles
Graph-based classifiers
Machine learning
title_short Ensembles na classificação relacional
title_full Ensembles na classificação relacional
title_fullStr Ensembles na classificação relacional
title_full_unstemmed Ensembles na classificação relacional
title_sort Ensembles na classificação relacional
author Llerena, Nils Ever Murrugarra
author_facet Llerena, Nils Ever Murrugarra
author_role author
dc.contributor.none.fl_str_mv Lopes, Alneu de Andrade
dc.contributor.author.fl_str_mv Llerena, Nils Ever Murrugarra
dc.subject.por.fl_str_mv Aprendizado de máquina
Bagging
Bagging
Boosting
Boosting
Classificadores baseados em grafos
Ensembles
Ensembles
Graph-based classifiers
Machine learning
topic Aprendizado de máquina
Bagging
Bagging
Boosting
Boosting
Classificadores baseados em grafos
Ensembles
Ensembles
Graph-based classifiers
Machine learning
description Em diversos domínios, além das informações sobre os objetos ou entidades que os compõem, existem, também, informaçõoes a respeito das relações entre esses objetos. Alguns desses domínios são, por exemplo, as redes de co-autoria, e as páginas Web. Nesse sentido, é natural procurar por técnicas de classificação que levem em conta estas informações. Dentre essas técnicas estão as denominadas classificação baseada em grafos, que visam classificar os exemplos levando em conta as relações existentes entre eles. Este trabalho aborda o desenvolvimento de métodos para melhorar o desempenho de classificadores baseados em grafos utilizando estratégias de ensembles. Um classificador ensemble considera um conjunto de classificadores cujas predições individuais são combinadas de alguma forma. Este classificador normalmente apresenta um melhor desempenho do que seus classificadores individualmente. Assim, foram desenvolvidas três técnicas: a primeira para dados originalmente no formato proposicional e transformados para formato relacional baseado em grafo e a segunda e terceira para dados originalmente já no formato de grafo. A primeira técnica, inspirada no algoritmo de boosting, originou o algoritmo KNN Adaptativo Baseado em Grafos (A-KNN). A segunda ténica, inspirada no algoritmo de Bagging originou trê abordagens de Bagging Baseado em Grafos (BG). Finalmente, a terceira técnica, inspirada no algoritmo de Cross-Validated Committees, originou o Cross-Validated Committees Baseado em Grafos (CVCG). Os experimentos foram realizados em 38 conjuntos de dados, sendo 22 conjuntos proposicionais e 16 conjuntos no formato relacional. Na avaliação foi utilizado o esquema de 10-fold stratified cross-validation e para determinar diferenças estatísticas entre classificadores foi utilizado o método proposto por Demsar (2006). Em relação aos resultados, as três técnicas melhoraram ou mantiveram o desempenho dos classificadores bases. Concluindo, ensembles aplicados em classificadores baseados em grafos apresentam bons resultados no desempenho destes
publishDate 2011
dc.date.none.fl_str_mv 2011-09-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102011-095113/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102011-095113/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257113986859008