Plotting Time: Exploring Visual Representations for Time Series Classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/58071 |
Resumo: | Tese de mestrado, Engenharia Informática, 2022, Universidade de Lisboa, Faculdade de Ciências |
id |
RCAP_ab8135391cdd1e25fc947b66721ec362 |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/58071 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Plotting Time: Exploring Visual Representations for Time Series ClassificationSeries TemporaisGeração de ImagensRedes Neuronais ConvolucionaisRepresentações GráficasTeses de mestrado - 2022Departamento de InformáticaTese de mestrado, Engenharia Informática, 2022, Universidade de Lisboa, Faculdade de CiênciasTime series data is a collection of data points acquired in successive order over a period of time, allowing us to obtain temporal information and make time-based predictions through the combination of Machine Learning (ML) algorithms. Time series are prevalent in crucial sectors for society’s development, such as Economy, Health, Weather, and Astronomy, with the objective of improving the quality of life through the prediction of climate changes, economic variations, earthquakes, and other types of events. These sectors require models with good predictive abilities and capable of scaling as the volume of data gradually increases. We can address this issue by using Deep Learning (DL) models that can keep a good performance while increasing the amount of data. One example is the Convolutional Neural Network (CNN), which uses images as input in several activity sectors. There is not much time series-related work with deep learning models and image generation. As a result, our objective is to develop new methods for image generation and then train them with a simple CNN. We focus on time series data to create a new algorithm for converting non-image time series data into graphical images that contain either box plots or violin plots with statistical information. We hypothesize that CNNs can interpret and learn different elements of the plots, and by comparing two different approaches, we can verify this statement. Our results indicate that CNNs may not understand some elements of the box and violin plots, for example, the outliers and quartiles, and focus more on the density and distribution of the data. In the future, it would be interesting to study alternative image generation algorithms and explore graphical representations in multivariate datasets.Silva, Sara Guilherme Oliveira daRepositório da Universidade de LisboaMarques, Brian Manuel Monteiro2023-06-07T14:20:39Z202220222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10451/58071enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T17:06:49Zoai:repositorio.ul.pt:10451/58071Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:08:27.235511Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Plotting Time: Exploring Visual Representations for Time Series Classification |
title |
Plotting Time: Exploring Visual Representations for Time Series Classification |
spellingShingle |
Plotting Time: Exploring Visual Representations for Time Series Classification Marques, Brian Manuel Monteiro Series Temporais Geração de Imagens Redes Neuronais Convolucionais Representações Gráficas Teses de mestrado - 2022 Departamento de Informática |
title_short |
Plotting Time: Exploring Visual Representations for Time Series Classification |
title_full |
Plotting Time: Exploring Visual Representations for Time Series Classification |
title_fullStr |
Plotting Time: Exploring Visual Representations for Time Series Classification |
title_full_unstemmed |
Plotting Time: Exploring Visual Representations for Time Series Classification |
title_sort |
Plotting Time: Exploring Visual Representations for Time Series Classification |
author |
Marques, Brian Manuel Monteiro |
author_facet |
Marques, Brian Manuel Monteiro |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Sara Guilherme Oliveira da Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Marques, Brian Manuel Monteiro |
dc.subject.por.fl_str_mv |
Series Temporais Geração de Imagens Redes Neuronais Convolucionais Representações Gráficas Teses de mestrado - 2022 Departamento de Informática |
topic |
Series Temporais Geração de Imagens Redes Neuronais Convolucionais Representações Gráficas Teses de mestrado - 2022 Departamento de Informática |
description |
Tese de mestrado, Engenharia Informática, 2022, Universidade de Lisboa, Faculdade de Ciências |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2022 2022-01-01T00:00:00Z 2023-06-07T14:20:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/58071 |
url |
http://hdl.handle.net/10451/58071 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134639560851456 |