Mapping dynamic environments using Markov random field models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/27573 https://doi.org/10.23919/IConAC.2018.8749092 |
Resumo: | This paper focuses on dynamic environments for mobile robots and proposes a new mapping method combining hidden Markov models (HMMs) and Markov random fields (MRFs). Grid cells are used to represent the dynamic environment. The state change of every grid cell is modelled by an HMM with an unknown transition matrix. MRFs are applied to consider the dependence between different transition matrices. The unknown parameters are learnt from not only the corresponding observations but also its neighbours. Given the dependence, parameter maps are smooth. Expectation maximization (EM) is applied to obtain the best parameters from observations. Finally, a simulation is done to evaluate the proposed method. |
id |
RCAP_abc736bad9fea397e80b72902abbb2d2 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/27573 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Mapping dynamic environments using Markov random field modelsMappingMarkovdynamicRoboticThis paper focuses on dynamic environments for mobile robots and proposes a new mapping method combining hidden Markov models (HMMs) and Markov random fields (MRFs). Grid cells are used to represent the dynamic environment. The state change of every grid cell is modelled by an HMM with an unknown transition matrix. MRFs are applied to consider the dependence between different transition matrices. The unknown parameters are learnt from not only the corresponding observations but also its neighbours. Given the dependence, parameter maps are smooth. Expectation maximization (EM) is applied to obtain the best parameters from observations. Finally, a simulation is done to evaluate the proposed method.IEEE2020-03-02T14:04:13Z2020-03-022018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/27573https://doi.org/10.23919/IConAC.2018.8749092http://hdl.handle.net/10174/27573https://doi.org/10.23919/IConAC.2018.8749092engH. Li, M. Barão and L. Rato, "Mapping dynamic environments using Markov random field models," 2018 24th International Conference on Automation and Computing (ICAC), Newcastle upon Tyne, United Kingdom, 2018, pp. 1-5.ndmjsb@uevora.ptlmr@uevora.pt498Li, HongjunBarão, MiguelRato, Luisinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:23:13Zoai:dspace.uevora.pt:10174/27573Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:17:39.375826Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Mapping dynamic environments using Markov random field models |
title |
Mapping dynamic environments using Markov random field models |
spellingShingle |
Mapping dynamic environments using Markov random field models Li, Hongjun Mapping Markov dynamic Robotic |
title_short |
Mapping dynamic environments using Markov random field models |
title_full |
Mapping dynamic environments using Markov random field models |
title_fullStr |
Mapping dynamic environments using Markov random field models |
title_full_unstemmed |
Mapping dynamic environments using Markov random field models |
title_sort |
Mapping dynamic environments using Markov random field models |
author |
Li, Hongjun |
author_facet |
Li, Hongjun Barão, Miguel Rato, Luis |
author_role |
author |
author2 |
Barão, Miguel Rato, Luis |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Li, Hongjun Barão, Miguel Rato, Luis |
dc.subject.por.fl_str_mv |
Mapping Markov dynamic Robotic |
topic |
Mapping Markov dynamic Robotic |
description |
This paper focuses on dynamic environments for mobile robots and proposes a new mapping method combining hidden Markov models (HMMs) and Markov random fields (MRFs). Grid cells are used to represent the dynamic environment. The state change of every grid cell is modelled by an HMM with an unknown transition matrix. MRFs are applied to consider the dependence between different transition matrices. The unknown parameters are learnt from not only the corresponding observations but also its neighbours. Given the dependence, parameter maps are smooth. Expectation maximization (EM) is applied to obtain the best parameters from observations. Finally, a simulation is done to evaluate the proposed method. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01T00:00:00Z 2020-03-02T14:04:13Z 2020-03-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/27573 https://doi.org/10.23919/IConAC.2018.8749092 http://hdl.handle.net/10174/27573 https://doi.org/10.23919/IConAC.2018.8749092 |
url |
http://hdl.handle.net/10174/27573 https://doi.org/10.23919/IConAC.2018.8749092 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
H. Li, M. Barão and L. Rato, "Mapping dynamic environments using Markov random field models," 2018 24th International Conference on Automation and Computing (ICAC), Newcastle upon Tyne, United Kingdom, 2018, pp. 1-5. nd mjsb@uevora.pt lmr@uevora.pt 498 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136658587648000 |