Gaussian random field-based log odds occupancy mapping
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/24962 https://doi.org/10.1109/AQTR.2018.8402727 |
Resumo: | This paper focuses on mapping problem with known robot pose in static environments and proposes a Gaussian random field-based log odds occupancy mapping (GRF-LOOM). In this method, occupancy probability is regarded as an unknown parameter and the dependence between parameters are considered. Given measurements and the dependence, the parameters of not only observed space but also unobserved space can be predicted. The occupancy probabilities in log odds form are regarded as a GRF. This mapping task can be solved by the well-known prediction equation in Gaussian processes, which involves an inverse problem. Instead of the prediction equation, a new recursive algorithm is also proposed to avoid the inverse problem. Finally, the proposed method is evaluated in simulations. |
id |
RCAP_ec87d26a020a2ad095052653259e24f3 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/24962 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Gaussian random field-based log odds occupancy mappingGaussian ProcessesRobot mappingThis paper focuses on mapping problem with known robot pose in static environments and proposes a Gaussian random field-based log odds occupancy mapping (GRF-LOOM). In this method, occupancy probability is regarded as an unknown parameter and the dependence between parameters are considered. Given measurements and the dependence, the parameters of not only observed space but also unobserved space can be predicted. The occupancy probabilities in log odds form are regarded as a GRF. This mapping task can be solved by the well-known prediction equation in Gaussian processes, which involves an inverse problem. Instead of the prediction equation, a new recursive algorithm is also proposed to avoid the inverse problem. Finally, the proposed method is evaluated in simulations.IEEE2019-02-26T15:42:55Z2019-02-262018-05-24T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://hdl.handle.net/10174/24962https://doi.org/10.1109/AQTR.2018.8402727http://hdl.handle.net/10174/24962https://doi.org/10.1109/AQTR.2018.8402727porLi H., Barão M., Rato L., "Gaussian random field-based log odds occupancy mapping", In 2018 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), May 24-26, 2018, Cluj-Napoca, Romania.simnaonaod36630@alunos.uevora.ptmjsb@uevora.ptlmr@uevora.pt281Li, HongjunBarão, MiguelRato, Luísinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:18:37Zoai:dspace.uevora.pt:10174/24962Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:15:35.187246Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Gaussian random field-based log odds occupancy mapping |
title |
Gaussian random field-based log odds occupancy mapping |
spellingShingle |
Gaussian random field-based log odds occupancy mapping Li, Hongjun Gaussian Processes Robot mapping |
title_short |
Gaussian random field-based log odds occupancy mapping |
title_full |
Gaussian random field-based log odds occupancy mapping |
title_fullStr |
Gaussian random field-based log odds occupancy mapping |
title_full_unstemmed |
Gaussian random field-based log odds occupancy mapping |
title_sort |
Gaussian random field-based log odds occupancy mapping |
author |
Li, Hongjun |
author_facet |
Li, Hongjun Barão, Miguel Rato, Luís |
author_role |
author |
author2 |
Barão, Miguel Rato, Luís |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Li, Hongjun Barão, Miguel Rato, Luís |
dc.subject.por.fl_str_mv |
Gaussian Processes Robot mapping |
topic |
Gaussian Processes Robot mapping |
description |
This paper focuses on mapping problem with known robot pose in static environments and proposes a Gaussian random field-based log odds occupancy mapping (GRF-LOOM). In this method, occupancy probability is regarded as an unknown parameter and the dependence between parameters are considered. Given measurements and the dependence, the parameters of not only observed space but also unobserved space can be predicted. The occupancy probabilities in log odds form are regarded as a GRF. This mapping task can be solved by the well-known prediction equation in Gaussian processes, which involves an inverse problem. Instead of the prediction equation, a new recursive algorithm is also proposed to avoid the inverse problem. Finally, the proposed method is evaluated in simulations. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05-24T00:00:00Z 2019-02-26T15:42:55Z 2019-02-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/24962 https://doi.org/10.1109/AQTR.2018.8402727 http://hdl.handle.net/10174/24962 https://doi.org/10.1109/AQTR.2018.8402727 |
url |
http://hdl.handle.net/10174/24962 https://doi.org/10.1109/AQTR.2018.8402727 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Li H., Barão M., Rato L., "Gaussian random field-based log odds occupancy mapping", In 2018 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), May 24-26, 2018, Cluj-Napoca, Romania. sim nao nao d36630@alunos.uevora.pt mjsb@uevora.pt lmr@uevora.pt 281 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136638331256832 |