Gaussian random field-based log odds occupancy mapping

Detalhes bibliográficos
Autor(a) principal: Li, Hongjun
Data de Publicação: 2018
Outros Autores: Barão, Miguel, Rato, Luís
Tipo de documento: Artigo de conferência
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/24962
https://doi.org/10.1109/AQTR.2018.8402727
Resumo: This paper focuses on mapping problem with known robot pose in static environments and proposes a Gaussian random field-based log odds occupancy mapping (GRF-LOOM). In this method, occupancy probability is regarded as an unknown parameter and the dependence between parameters are considered. Given measurements and the dependence, the parameters of not only observed space but also unobserved space can be predicted. The occupancy probabilities in log odds form are regarded as a GRF. This mapping task can be solved by the well-known prediction equation in Gaussian processes, which involves an inverse problem. Instead of the prediction equation, a new recursive algorithm is also proposed to avoid the inverse problem. Finally, the proposed method is evaluated in simulations.
id RCAP_ec87d26a020a2ad095052653259e24f3
oai_identifier_str oai:dspace.uevora.pt:10174/24962
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Gaussian random field-based log odds occupancy mappingGaussian ProcessesRobot mappingThis paper focuses on mapping problem with known robot pose in static environments and proposes a Gaussian random field-based log odds occupancy mapping (GRF-LOOM). In this method, occupancy probability is regarded as an unknown parameter and the dependence between parameters are considered. Given measurements and the dependence, the parameters of not only observed space but also unobserved space can be predicted. The occupancy probabilities in log odds form are regarded as a GRF. This mapping task can be solved by the well-known prediction equation in Gaussian processes, which involves an inverse problem. Instead of the prediction equation, a new recursive algorithm is also proposed to avoid the inverse problem. Finally, the proposed method is evaluated in simulations.IEEE2019-02-26T15:42:55Z2019-02-262018-05-24T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://hdl.handle.net/10174/24962https://doi.org/10.1109/AQTR.2018.8402727http://hdl.handle.net/10174/24962https://doi.org/10.1109/AQTR.2018.8402727porLi H., Barão M., Rato L., "Gaussian random field-based log odds occupancy mapping", In 2018 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), May 24-26, 2018, Cluj-Napoca, Romania.simnaonaod36630@alunos.uevora.ptmjsb@uevora.ptlmr@uevora.pt281Li, HongjunBarão, MiguelRato, Luísinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:18:37Zoai:dspace.uevora.pt:10174/24962Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:15:35.187246Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Gaussian random field-based log odds occupancy mapping
title Gaussian random field-based log odds occupancy mapping
spellingShingle Gaussian random field-based log odds occupancy mapping
Li, Hongjun
Gaussian Processes
Robot mapping
title_short Gaussian random field-based log odds occupancy mapping
title_full Gaussian random field-based log odds occupancy mapping
title_fullStr Gaussian random field-based log odds occupancy mapping
title_full_unstemmed Gaussian random field-based log odds occupancy mapping
title_sort Gaussian random field-based log odds occupancy mapping
author Li, Hongjun
author_facet Li, Hongjun
Barão, Miguel
Rato, Luís
author_role author
author2 Barão, Miguel
Rato, Luís
author2_role author
author
dc.contributor.author.fl_str_mv Li, Hongjun
Barão, Miguel
Rato, Luís
dc.subject.por.fl_str_mv Gaussian Processes
Robot mapping
topic Gaussian Processes
Robot mapping
description This paper focuses on mapping problem with known robot pose in static environments and proposes a Gaussian random field-based log odds occupancy mapping (GRF-LOOM). In this method, occupancy probability is regarded as an unknown parameter and the dependence between parameters are considered. Given measurements and the dependence, the parameters of not only observed space but also unobserved space can be predicted. The occupancy probabilities in log odds form are regarded as a GRF. This mapping task can be solved by the well-known prediction equation in Gaussian processes, which involves an inverse problem. Instead of the prediction equation, a new recursive algorithm is also proposed to avoid the inverse problem. Finally, the proposed method is evaluated in simulations.
publishDate 2018
dc.date.none.fl_str_mv 2018-05-24T00:00:00Z
2019-02-26T15:42:55Z
2019-02-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/24962
https://doi.org/10.1109/AQTR.2018.8402727
http://hdl.handle.net/10174/24962
https://doi.org/10.1109/AQTR.2018.8402727
url http://hdl.handle.net/10174/24962
https://doi.org/10.1109/AQTR.2018.8402727
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Li H., Barão M., Rato L., "Gaussian random field-based log odds occupancy mapping", In 2018 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), May 24-26, 2018, Cluj-Napoca, Romania.
sim
nao
nao
d36630@alunos.uevora.pt
mjsb@uevora.pt
lmr@uevora.pt
281
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136638331256832