Multiple solutions with sign information for (p, 2)−equations with asymmetric resonant reaction

Detalhes bibliográficos
Autor(a) principal: Aizicovici, Sergiu
Data de Publicação: 2020
Outros Autores: Papageorgiou, Nikolaos S., Staicu, Vasile
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/35314
Resumo: We consider a nonlinear nonhomogeneous Dirichlet problem driven by the sum of a p−Laplacian and a Laplacian (a (p, 2)− equation). The reaction is the sum of two competing terms, a parametric (p − 1)−sublinear term and an asymmetric (p − 1)−linear perturbation which is resonant at −∞. Using variational methods together with truncations and comparison techniques and Morse theory (critical groups), we prove two multiplicity theorems which provide sign information for all the solutions.
id RCAP_ad330c1ec211ab4cebf11e488b54a7ff
oai_identifier_str oai:ria.ua.pt:10773/35314
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Multiple solutions with sign information for (p, 2)−equations with asymmetric resonant reactionResonanceConstant sign and nodal solutionsNonlinear regularityMaximum principleCritical groupsWe consider a nonlinear nonhomogeneous Dirichlet problem driven by the sum of a p−Laplacian and a Laplacian (a (p, 2)− equation). The reaction is the sum of two competing terms, a parametric (p − 1)−sublinear term and an asymmetric (p − 1)−linear perturbation which is resonant at −∞. Using variational methods together with truncations and comparison techniques and Morse theory (critical groups), we prove two multiplicity theorems which provide sign information for all the solutions.Yokohama Publishers2022-11-25T16:57:09Z2020-01-01T00:00:00Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35314eng2189-3756Aizicovici, SergiuPapageorgiou, Nikolaos S.Staicu, Vasileinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:55:52Zoai:ria.ua.pt:10773/35314Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:21.448201Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Multiple solutions with sign information for (p, 2)−equations with asymmetric resonant reaction
title Multiple solutions with sign information for (p, 2)−equations with asymmetric resonant reaction
spellingShingle Multiple solutions with sign information for (p, 2)−equations with asymmetric resonant reaction
Aizicovici, Sergiu
Resonance
Constant sign and nodal solutions
Nonlinear regularity
Maximum principle
Critical groups
title_short Multiple solutions with sign information for (p, 2)−equations with asymmetric resonant reaction
title_full Multiple solutions with sign information for (p, 2)−equations with asymmetric resonant reaction
title_fullStr Multiple solutions with sign information for (p, 2)−equations with asymmetric resonant reaction
title_full_unstemmed Multiple solutions with sign information for (p, 2)−equations with asymmetric resonant reaction
title_sort Multiple solutions with sign information for (p, 2)−equations with asymmetric resonant reaction
author Aizicovici, Sergiu
author_facet Aizicovici, Sergiu
Papageorgiou, Nikolaos S.
Staicu, Vasile
author_role author
author2 Papageorgiou, Nikolaos S.
Staicu, Vasile
author2_role author
author
dc.contributor.author.fl_str_mv Aizicovici, Sergiu
Papageorgiou, Nikolaos S.
Staicu, Vasile
dc.subject.por.fl_str_mv Resonance
Constant sign and nodal solutions
Nonlinear regularity
Maximum principle
Critical groups
topic Resonance
Constant sign and nodal solutions
Nonlinear regularity
Maximum principle
Critical groups
description We consider a nonlinear nonhomogeneous Dirichlet problem driven by the sum of a p−Laplacian and a Laplacian (a (p, 2)− equation). The reaction is the sum of two competing terms, a parametric (p − 1)−sublinear term and an asymmetric (p − 1)−linear perturbation which is resonant at −∞. Using variational methods together with truncations and comparison techniques and Morse theory (critical groups), we prove two multiplicity theorems which provide sign information for all the solutions.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01T00:00:00Z
2020
2022-11-25T16:57:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/35314
url http://hdl.handle.net/10773/35314
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2189-3756
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Yokohama Publishers
publisher.none.fl_str_mv Yokohama Publishers
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137669514526720