On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: part 3. Mass inflation and extendibility of the solutions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/13059 |
Resumo: | This paper is the third part of a trilogy dedicated to the following problem: given spherically symmetric characteristic initial data for the Einstein–Maxwell-scalar field system with a cosmological constant ?, with the data on the outgoing initial null hypersurface given by a subextremal Reissner–Nordström black hole event horizon, study the future extendibility of the corresponding maximal globally hyperbolic development as a “suitably regular” Lorentzian manifold. In the first part [7] of this series we established the well posedness of the characteristic problem, whereas in the second part [8] we studied the stability of the radius function at the Cauchy horizon. In this third and final paper we show that, depending on the decay rate of the initial data, mass inflation may or may not occur. When the mass is controlled, it is possible to obtain continuous extensions of the metric across the Cauchy horizon with square integrable Christoffel symbols. Under slightly stronger conditions, we can bound the gradient of the scalar field. This allows the construction of (non-isometric) extensions of the maximal development which are classical solutions of the Einstein equations. Our results provide evidence against the validity of the strong cosmic censorship conjecture when ?>0. |
id |
RCAP_af422ec2e924aa90a5f2bdfc5a63c9b8 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/13059 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: part 3. Mass inflation and extendibility of the solutionsEinstein equationsBlack holesStrong cosmic censorshipCauchy horizonScalar fieldSpherical symmetryThis paper is the third part of a trilogy dedicated to the following problem: given spherically symmetric characteristic initial data for the Einstein–Maxwell-scalar field system with a cosmological constant ?, with the data on the outgoing initial null hypersurface given by a subextremal Reissner–Nordström black hole event horizon, study the future extendibility of the corresponding maximal globally hyperbolic development as a “suitably regular” Lorentzian manifold. In the first part [7] of this series we established the well posedness of the characteristic problem, whereas in the second part [8] we studied the stability of the radius function at the Cauchy horizon. In this third and final paper we show that, depending on the decay rate of the initial data, mass inflation may or may not occur. When the mass is controlled, it is possible to obtain continuous extensions of the metric across the Cauchy horizon with square integrable Christoffel symbols. Under slightly stronger conditions, we can bound the gradient of the scalar field. This allows the construction of (non-isometric) extensions of the maximal development which are classical solutions of the Einstein equations. Our results provide evidence against the validity of the strong cosmic censorship conjecture when ?>0.Springer International Publishing2017-04-20T11:35:25Z2017-01-01T00:00:00Z20172019-03-29T12:35:16Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/13059eng2199-257610.1007/s40818-017-0028-6Costa, J. L.Girão, P. M.Natário, J.Silva, J. D.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:49:02Zoai:repositorio.iscte-iul.pt:10071/13059Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:24:00.428732Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: part 3. Mass inflation and extendibility of the solutions |
title |
On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: part 3. Mass inflation and extendibility of the solutions |
spellingShingle |
On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: part 3. Mass inflation and extendibility of the solutions Costa, J. L. Einstein equations Black holes Strong cosmic censorship Cauchy horizon Scalar field Spherical symmetry |
title_short |
On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: part 3. Mass inflation and extendibility of the solutions |
title_full |
On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: part 3. Mass inflation and extendibility of the solutions |
title_fullStr |
On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: part 3. Mass inflation and extendibility of the solutions |
title_full_unstemmed |
On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: part 3. Mass inflation and extendibility of the solutions |
title_sort |
On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: part 3. Mass inflation and extendibility of the solutions |
author |
Costa, J. L. |
author_facet |
Costa, J. L. Girão, P. M. Natário, J. Silva, J. D. |
author_role |
author |
author2 |
Girão, P. M. Natário, J. Silva, J. D. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Costa, J. L. Girão, P. M. Natário, J. Silva, J. D. |
dc.subject.por.fl_str_mv |
Einstein equations Black holes Strong cosmic censorship Cauchy horizon Scalar field Spherical symmetry |
topic |
Einstein equations Black holes Strong cosmic censorship Cauchy horizon Scalar field Spherical symmetry |
description |
This paper is the third part of a trilogy dedicated to the following problem: given spherically symmetric characteristic initial data for the Einstein–Maxwell-scalar field system with a cosmological constant ?, with the data on the outgoing initial null hypersurface given by a subextremal Reissner–Nordström black hole event horizon, study the future extendibility of the corresponding maximal globally hyperbolic development as a “suitably regular” Lorentzian manifold. In the first part [7] of this series we established the well posedness of the characteristic problem, whereas in the second part [8] we studied the stability of the radius function at the Cauchy horizon. In this third and final paper we show that, depending on the decay rate of the initial data, mass inflation may or may not occur. When the mass is controlled, it is possible to obtain continuous extensions of the metric across the Cauchy horizon with square integrable Christoffel symbols. Under slightly stronger conditions, we can bound the gradient of the scalar field. This allows the construction of (non-isometric) extensions of the maximal development which are classical solutions of the Einstein equations. Our results provide evidence against the validity of the strong cosmic censorship conjecture when ?>0. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04-20T11:35:25Z 2017-01-01T00:00:00Z 2017 2019-03-29T12:35:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/13059 |
url |
http://hdl.handle.net/10071/13059 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2199-2576 10.1007/s40818-017-0028-6 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer International Publishing |
publisher.none.fl_str_mv |
Springer International Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134802376392704 |