Oversampling for imbalanced learning based on k-means and smote
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/31042 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
id |
RCAP_af89d92526d4f1844821176292151f9a |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/31042 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Oversampling for imbalanced learning based on k-means and smoteClass-imbalanced learningOversamplingClassificationClusteringSupervised learningDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsLearning from class-imbalanced data continues to be a common and challenging problem in supervised learning as standard classification algorithms are designed to handle balanced class distributions. While different strategies exist to tackle this problem, methods which generate artificial data to achieve a balanced class distribution are more versatile than modifications to the classification algorithm. Such techniques, called oversamplers, modify the training data, allowing any classifier to be used with class-imbalanced datasets. Many algorithms have been proposed for this task, but most are complex and tend to generate unnecessary noise. This work presents a simple and effective oversampling method based on k-means clustering and SMOTE oversampling, which avoids the generation of noise and effectively overcomes imbalances between and within classes. Empirical results of extensive experiments with 71 datasets show that training data oversampled with the proposed method improves classification results. Moreover, k-means SMOTE consistently outperforms other popular oversampling methods. An implementation is made available in the python programming language.Bação, Fernando José Ferreira LucasRUNLast, Felix2018-02-22T16:44:00Z2018-02-052018-02-05T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/31042TID:201852080enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:17:09Zoai:run.unl.pt:10362/31042Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:29:34.791423Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Oversampling for imbalanced learning based on k-means and smote |
title |
Oversampling for imbalanced learning based on k-means and smote |
spellingShingle |
Oversampling for imbalanced learning based on k-means and smote Last, Felix Class-imbalanced learning Oversampling Classification Clustering Supervised learning |
title_short |
Oversampling for imbalanced learning based on k-means and smote |
title_full |
Oversampling for imbalanced learning based on k-means and smote |
title_fullStr |
Oversampling for imbalanced learning based on k-means and smote |
title_full_unstemmed |
Oversampling for imbalanced learning based on k-means and smote |
title_sort |
Oversampling for imbalanced learning based on k-means and smote |
author |
Last, Felix |
author_facet |
Last, Felix |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bação, Fernando José Ferreira Lucas RUN |
dc.contributor.author.fl_str_mv |
Last, Felix |
dc.subject.por.fl_str_mv |
Class-imbalanced learning Oversampling Classification Clustering Supervised learning |
topic |
Class-imbalanced learning Oversampling Classification Clustering Supervised learning |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-02-22T16:44:00Z 2018-02-05 2018-02-05T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/31042 TID:201852080 |
url |
http://hdl.handle.net/10362/31042 |
identifier_str_mv |
TID:201852080 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137921289158656 |