Improving imbalanced land cover classification with k-means smote
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/121176 |
Resumo: | Fonseca, J., Douzas, G., & Bacao, F. (2021). Improving imbalanced land cover classification with k-means smote: Detecting and oversampling distinctive minority spectral signatures. Information (Switzerland), 12(7), 1-20. [266]. https://doi.org/10.3390/info12070266 |
id |
RCAP_f99c591312bd914513c87c62ac5d8eaa |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/121176 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Improving imbalanced land cover classification with k-means smoteDetecting and oversampling distinctive minority spectral signaturesClusteringData augmentationImbalanced learningLULC classificationOversamplingInformation SystemsSDG 15 - Life on LandFonseca, J., Douzas, G., & Bacao, F. (2021). Improving imbalanced land cover classification with k-means smote: Detecting and oversampling distinctive minority spectral signatures. Information (Switzerland), 12(7), 1-20. [266]. https://doi.org/10.3390/info12070266Land cover maps are a critical tool to support informed policy development, planning, and resource management decisions. With significant upsides, the automatic production of Land Use/Land Cover maps has been a topic of interest for the remote sensing community for several years, but it is still fraught with technical challenges. One such challenge is the imbalanced nature of most remotely sensed data. The asymmetric class distribution impacts negatively the performance of classifiers and adds a new source of error to the production of these maps. In this paper, we address the imbalanced learning problem, by using K-means and the Synthetic Minority Oversampling Technique (SMOTE) as an improved oversampling algorithm. K-means SMOTE improves the quality of newly created artificial data by addressing both the between-class imbalance, as traditional oversamplers do, but also the within-class imbalance, avoiding the generation of noisy data while effectively overcoming data imbalance. The performance of K-means SMOTE is compared to three popular oversampling methods (Random Oversampling, SMOTE and Borderline-SMOTE) using seven remote sensing benchmark datasets, three classifiers (Logistic Regression, K-Nearest Neighbors and Random Forest Classifier) and three evaluation metrics using a five-fold cross-validation approach with three different initialization seeds. The statistical analysis of the results show that the proposed method consistently outperforms the remaining oversamplers producing higher quality land cover classifications. These results suggest that LULC data can benefit significantly from the use of more sophisticated oversamplers as spectral signatures for the same class can vary according to geographical distribution.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNFonseca, JoaoDouzas, GeorgiosBacao, Fernando2021-07-16T22:21:57Z2021-07-012021-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article20application/pdfhttp://hdl.handle.net/10362/121176eng2078-2489PURE: 32603681https://doi.org/10.3390/info12070266info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:03:30Zoai:run.unl.pt:10362/121176Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:44:32.896976Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Improving imbalanced land cover classification with k-means smote Detecting and oversampling distinctive minority spectral signatures |
title |
Improving imbalanced land cover classification with k-means smote |
spellingShingle |
Improving imbalanced land cover classification with k-means smote Fonseca, Joao Clustering Data augmentation Imbalanced learning LULC classification Oversampling Information Systems SDG 15 - Life on Land |
title_short |
Improving imbalanced land cover classification with k-means smote |
title_full |
Improving imbalanced land cover classification with k-means smote |
title_fullStr |
Improving imbalanced land cover classification with k-means smote |
title_full_unstemmed |
Improving imbalanced land cover classification with k-means smote |
title_sort |
Improving imbalanced land cover classification with k-means smote |
author |
Fonseca, Joao |
author_facet |
Fonseca, Joao Douzas, Georgios Bacao, Fernando |
author_role |
author |
author2 |
Douzas, Georgios Bacao, Fernando |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Fonseca, Joao Douzas, Georgios Bacao, Fernando |
dc.subject.por.fl_str_mv |
Clustering Data augmentation Imbalanced learning LULC classification Oversampling Information Systems SDG 15 - Life on Land |
topic |
Clustering Data augmentation Imbalanced learning LULC classification Oversampling Information Systems SDG 15 - Life on Land |
description |
Fonseca, J., Douzas, G., & Bacao, F. (2021). Improving imbalanced land cover classification with k-means smote: Detecting and oversampling distinctive minority spectral signatures. Information (Switzerland), 12(7), 1-20. [266]. https://doi.org/10.3390/info12070266 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-16T22:21:57Z 2021-07-01 2021-07-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/121176 |
url |
http://hdl.handle.net/10362/121176 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2078-2489 PURE: 32603681 https://doi.org/10.3390/info12070266 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
20 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138053252448256 |