Piezoelectric actuator: searching inspiration in nature for osteoblast stimulation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/2466 |
Resumo: | Abstract Bone is a composite with piezoelectric properties. Bone mass and structure are dependent on mechanical stress and adaptive response at cellular and tissue levels, but the role piezoelectricity plays in bone physiology is yet to be understood. Physical activity enhances bone density, through mechanical stimulation. Osteocytes and osteoblasts are essential for mechanosensing and mechanotransduction. Strategies have been tested for mechanical stimulation of cells and tissues in vitro. The aim of this work was to experimentally validate the use of piezoelectric materials as a mean of directly straining bone cells by converse piezoelectric effect. To estimate the magnitude of stress/strain, finite numerical models were applied and theoretical data was complemented by optic experimental data. Osteoblasts were then grown on the surface of the piezoelectric material and cell response studied. |
id |
RCAP_afae23f23188869bd462cba4068355f6 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/2466 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Piezoelectric actuator: searching inspiration in nature for osteoblast stimulationA. Smart material; Polymeric piezoelectric; C. Finite element analysis (FEA); C. Stress concentrationsAbstract Bone is a composite with piezoelectric properties. Bone mass and structure are dependent on mechanical stress and adaptive response at cellular and tissue levels, but the role piezoelectricity plays in bone physiology is yet to be understood. Physical activity enhances bone density, through mechanical stimulation. Osteocytes and osteoblasts are essential for mechanosensing and mechanotransduction. Strategies have been tested for mechanical stimulation of cells and tissues in vitro. The aim of this work was to experimentally validate the use of piezoelectric materials as a mean of directly straining bone cells by converse piezoelectric effect. To estimate the magnitude of stress/strain, finite numerical models were applied and theoretical data was complemented by optic experimental data. Osteoblasts were then grown on the surface of the piezoelectric material and cell response studied.Elsevier2011-01-19T12:28:30Z2011-01-192010-11-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article64081 bytesapplication/pdfhttp://hdl.handle.net/10174/2466http://hdl.handle.net/10174/2466eng1920-19250266-353870Composites Science and Technology13livrendndndndndndComposites Science and TechnologyTsu-Wei Chou232Frias, ClaraReis, JoanaCapela Silva, FernandoPotes, JoséTorres Marques, AntónioSimões, Joséinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:38:56Zoai:dspace.uevora.pt:10174/2466Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:58:09.944497Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Piezoelectric actuator: searching inspiration in nature for osteoblast stimulation |
title |
Piezoelectric actuator: searching inspiration in nature for osteoblast stimulation |
spellingShingle |
Piezoelectric actuator: searching inspiration in nature for osteoblast stimulation Frias, Clara A. Smart material; Polymeric piezoelectric; C. Finite element analysis (FEA); C. Stress concentrations |
title_short |
Piezoelectric actuator: searching inspiration in nature for osteoblast stimulation |
title_full |
Piezoelectric actuator: searching inspiration in nature for osteoblast stimulation |
title_fullStr |
Piezoelectric actuator: searching inspiration in nature for osteoblast stimulation |
title_full_unstemmed |
Piezoelectric actuator: searching inspiration in nature for osteoblast stimulation |
title_sort |
Piezoelectric actuator: searching inspiration in nature for osteoblast stimulation |
author |
Frias, Clara |
author_facet |
Frias, Clara Reis, Joana Capela Silva, Fernando Potes, José Torres Marques, António Simões, José |
author_role |
author |
author2 |
Reis, Joana Capela Silva, Fernando Potes, José Torres Marques, António Simões, José |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Frias, Clara Reis, Joana Capela Silva, Fernando Potes, José Torres Marques, António Simões, José |
dc.subject.por.fl_str_mv |
A. Smart material; Polymeric piezoelectric; C. Finite element analysis (FEA); C. Stress concentrations |
topic |
A. Smart material; Polymeric piezoelectric; C. Finite element analysis (FEA); C. Stress concentrations |
description |
Abstract Bone is a composite with piezoelectric properties. Bone mass and structure are dependent on mechanical stress and adaptive response at cellular and tissue levels, but the role piezoelectricity plays in bone physiology is yet to be understood. Physical activity enhances bone density, through mechanical stimulation. Osteocytes and osteoblasts are essential for mechanosensing and mechanotransduction. Strategies have been tested for mechanical stimulation of cells and tissues in vitro. The aim of this work was to experimentally validate the use of piezoelectric materials as a mean of directly straining bone cells by converse piezoelectric effect. To estimate the magnitude of stress/strain, finite numerical models were applied and theoretical data was complemented by optic experimental data. Osteoblasts were then grown on the surface of the piezoelectric material and cell response studied. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-11-15T00:00:00Z 2011-01-19T12:28:30Z 2011-01-19 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/2466 http://hdl.handle.net/10174/2466 |
url |
http://hdl.handle.net/10174/2466 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1920-1925 0266-3538 70 Composites Science and Technology 13 livre nd nd nd nd nd nd Composites Science and Technology Tsu-Wei Chou 232 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
64081 bytes application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136465147396096 |