Analysis and prediction of hotel ratings from crowdsourced data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/12975 |
Resumo: | Crowdsourcing has become an essential source of information for tourism stakeholders. Every day, tourists leave large volumes of feedback data in the form of posts, likes, textual reviews, and ratings in dedicated crowdsourcing platforms. This behavior makes the analysis of crowdsourced information strategic, allowing the discovery of important knowledge regarding tourists and tourism resources. This paper presents a survey on the analysis and prediction of hotel ratings from crowdsourced data, covering both off‐line (batch) and on‐line (stream‐based) processing. Specifically, it reports multiple rating‐based profiling, recommendation, and evaluation techniques. While most of the surveyed works adopt entity‐based multicriteria profiling, prerecommendation filtering, and off‐line processing, the latest hotel rating prediction trends include feature‐based, trust and reputation modeling, postrecommendation filtering, and on‐line processing. Additionally, since the volume of crowdsourced ratings tends to increase, the deployment of profiling and recommendation algorithms on high‐performance computing resources should be further explored. |
id |
RCAP_afcb6cbea173afc98bd40c975ee365ee |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/12975 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Analysis and prediction of hotel ratings from crowdsourced dataCrowdsourcingProfilingRecommendationTrustworthinessCrowdsourcing has become an essential source of information for tourism stakeholders. Every day, tourists leave large volumes of feedback data in the form of posts, likes, textual reviews, and ratings in dedicated crowdsourcing platforms. This behavior makes the analysis of crowdsourced information strategic, allowing the discovery of important knowledge regarding tourists and tourism resources. This paper presents a survey on the analysis and prediction of hotel ratings from crowdsourced data, covering both off‐line (batch) and on‐line (stream‐based) processing. Specifically, it reports multiple rating‐based profiling, recommendation, and evaluation techniques. While most of the surveyed works adopt entity‐based multicriteria profiling, prerecommendation filtering, and off‐line processing, the latest hotel rating prediction trends include feature‐based, trust and reputation modeling, postrecommendation filtering, and on‐line processing. Additionally, since the volume of crowdsourced ratings tends to increase, the deployment of profiling and recommendation algorithms on high‐performance computing resources should be further explored.WileyRepositório Científico do Instituto Politécnico do PortoLeal, FátimaMalheiro, BeneditaBurguillo, Juan Carlos20182019-03-08T15:49:38Z2119-01-01T00:00:00Z2018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/12975engFátima Leal; Benedita Malheiro; Juan Carlos Burguillo. Analysis and prediction of hotel ratings from crowdsourced data, Wiley Interdisciplinary Reviews: 9, 2, e1296-e1296, 2018.1942-478710.1002/widm.1296metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:54:56Zoai:recipp.ipp.pt:10400.22/12975Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:33:11.413997Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Analysis and prediction of hotel ratings from crowdsourced data |
title |
Analysis and prediction of hotel ratings from crowdsourced data |
spellingShingle |
Analysis and prediction of hotel ratings from crowdsourced data Leal, Fátima Crowdsourcing Profiling Recommendation Trustworthiness |
title_short |
Analysis and prediction of hotel ratings from crowdsourced data |
title_full |
Analysis and prediction of hotel ratings from crowdsourced data |
title_fullStr |
Analysis and prediction of hotel ratings from crowdsourced data |
title_full_unstemmed |
Analysis and prediction of hotel ratings from crowdsourced data |
title_sort |
Analysis and prediction of hotel ratings from crowdsourced data |
author |
Leal, Fátima |
author_facet |
Leal, Fátima Malheiro, Benedita Burguillo, Juan Carlos |
author_role |
author |
author2 |
Malheiro, Benedita Burguillo, Juan Carlos |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Leal, Fátima Malheiro, Benedita Burguillo, Juan Carlos |
dc.subject.por.fl_str_mv |
Crowdsourcing Profiling Recommendation Trustworthiness |
topic |
Crowdsourcing Profiling Recommendation Trustworthiness |
description |
Crowdsourcing has become an essential source of information for tourism stakeholders. Every day, tourists leave large volumes of feedback data in the form of posts, likes, textual reviews, and ratings in dedicated crowdsourcing platforms. This behavior makes the analysis of crowdsourced information strategic, allowing the discovery of important knowledge regarding tourists and tourism resources. This paper presents a survey on the analysis and prediction of hotel ratings from crowdsourced data, covering both off‐line (batch) and on‐line (stream‐based) processing. Specifically, it reports multiple rating‐based profiling, recommendation, and evaluation techniques. While most of the surveyed works adopt entity‐based multicriteria profiling, prerecommendation filtering, and off‐line processing, the latest hotel rating prediction trends include feature‐based, trust and reputation modeling, postrecommendation filtering, and on‐line processing. Additionally, since the volume of crowdsourced ratings tends to increase, the deployment of profiling and recommendation algorithms on high‐performance computing resources should be further explored. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2018-01-01T00:00:00Z 2019-03-08T15:49:38Z 2119-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/12975 |
url |
http://hdl.handle.net/10400.22/12975 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Fátima Leal; Benedita Malheiro; Juan Carlos Burguillo. Analysis and prediction of hotel ratings from crowdsourced data, Wiley Interdisciplinary Reviews: 9, 2, e1296-e1296, 2018. 1942-4787 10.1002/widm.1296 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131424830259200 |