Analysis and prediction of hotel ratings from crowdsourced data

Detalhes bibliográficos
Autor(a) principal: Leal, Fátima
Data de Publicação: 2018
Outros Autores: Malheiro, Benedita, Burguillo, Juan Carlos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/12975
Resumo: Crowdsourcing has become an essential source of information for tourism stakeholders. Every day, tourists leave large volumes of feedback data in the form of posts, likes, textual reviews, and ratings in dedicated crowdsourcing platforms. This behavior makes the analysis of crowdsourced information strategic, allowing the discovery of important knowledge regarding tourists and tourism resources. This paper presents a survey on the analysis and prediction of hotel ratings from crowdsourced data, covering both off‐line (batch) and on‐line (stream‐based) processing. Specifically, it reports multiple rating‐based profiling, recommendation, and evaluation techniques. While most of the surveyed works adopt entity‐based multicriteria profiling, prerecommendation filtering, and off‐line processing, the latest hotel rating prediction trends include feature‐based, trust and reputation modeling, postrecommendation filtering, and on‐line processing. Additionally, since the volume of crowdsourced ratings tends to increase, the deployment of profiling and recommendation algorithms on high‐performance computing resources should be further explored.
id RCAP_afcb6cbea173afc98bd40c975ee365ee
oai_identifier_str oai:recipp.ipp.pt:10400.22/12975
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Analysis and prediction of hotel ratings from crowdsourced dataCrowdsourcingProfilingRecommendationTrustworthinessCrowdsourcing has become an essential source of information for tourism stakeholders. Every day, tourists leave large volumes of feedback data in the form of posts, likes, textual reviews, and ratings in dedicated crowdsourcing platforms. This behavior makes the analysis of crowdsourced information strategic, allowing the discovery of important knowledge regarding tourists and tourism resources. This paper presents a survey on the analysis and prediction of hotel ratings from crowdsourced data, covering both off‐line (batch) and on‐line (stream‐based) processing. Specifically, it reports multiple rating‐based profiling, recommendation, and evaluation techniques. While most of the surveyed works adopt entity‐based multicriteria profiling, prerecommendation filtering, and off‐line processing, the latest hotel rating prediction trends include feature‐based, trust and reputation modeling, postrecommendation filtering, and on‐line processing. Additionally, since the volume of crowdsourced ratings tends to increase, the deployment of profiling and recommendation algorithms on high‐performance computing resources should be further explored.WileyRepositório Científico do Instituto Politécnico do PortoLeal, FátimaMalheiro, BeneditaBurguillo, Juan Carlos20182019-03-08T15:49:38Z2119-01-01T00:00:00Z2018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/12975engFátima Leal; Benedita Malheiro; Juan Carlos Burguillo. Analysis and prediction of hotel ratings from crowdsourced data, Wiley Interdisciplinary Reviews: 9, 2, e1296-e1296, 2018.1942-478710.1002/widm.1296metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:54:56Zoai:recipp.ipp.pt:10400.22/12975Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:33:11.413997Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Analysis and prediction of hotel ratings from crowdsourced data
title Analysis and prediction of hotel ratings from crowdsourced data
spellingShingle Analysis and prediction of hotel ratings from crowdsourced data
Leal, Fátima
Crowdsourcing
Profiling
Recommendation
Trustworthiness
title_short Analysis and prediction of hotel ratings from crowdsourced data
title_full Analysis and prediction of hotel ratings from crowdsourced data
title_fullStr Analysis and prediction of hotel ratings from crowdsourced data
title_full_unstemmed Analysis and prediction of hotel ratings from crowdsourced data
title_sort Analysis and prediction of hotel ratings from crowdsourced data
author Leal, Fátima
author_facet Leal, Fátima
Malheiro, Benedita
Burguillo, Juan Carlos
author_role author
author2 Malheiro, Benedita
Burguillo, Juan Carlos
author2_role author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Leal, Fátima
Malheiro, Benedita
Burguillo, Juan Carlos
dc.subject.por.fl_str_mv Crowdsourcing
Profiling
Recommendation
Trustworthiness
topic Crowdsourcing
Profiling
Recommendation
Trustworthiness
description Crowdsourcing has become an essential source of information for tourism stakeholders. Every day, tourists leave large volumes of feedback data in the form of posts, likes, textual reviews, and ratings in dedicated crowdsourcing platforms. This behavior makes the analysis of crowdsourced information strategic, allowing the discovery of important knowledge regarding tourists and tourism resources. This paper presents a survey on the analysis and prediction of hotel ratings from crowdsourced data, covering both off‐line (batch) and on‐line (stream‐based) processing. Specifically, it reports multiple rating‐based profiling, recommendation, and evaluation techniques. While most of the surveyed works adopt entity‐based multicriteria profiling, prerecommendation filtering, and off‐line processing, the latest hotel rating prediction trends include feature‐based, trust and reputation modeling, postrecommendation filtering, and on‐line processing. Additionally, since the volume of crowdsourced ratings tends to increase, the deployment of profiling and recommendation algorithms on high‐performance computing resources should be further explored.
publishDate 2018
dc.date.none.fl_str_mv 2018
2018-01-01T00:00:00Z
2019-03-08T15:49:38Z
2119-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/12975
url http://hdl.handle.net/10400.22/12975
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Fátima Leal; Benedita Malheiro; Juan Carlos Burguillo. Analysis and prediction of hotel ratings from crowdsourced data, Wiley Interdisciplinary Reviews: 9, 2, e1296-e1296, 2018.
1942-4787
10.1002/widm.1296
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131424830259200