ISLES 2016 and 2017-Benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI

Detalhes bibliográficos
Autor(a) principal: Winzeck, Stefan
Data de Publicação: 2018
Outros Autores: Hakim, Arsany, McKinley, Richard, Pinto, José A. A. D. S. R., Alves, Victor, Silva, Carlos A., Pisov, Maxim, Krivov, Egor, Belyaev, Mikhail, Monteiro, Miguel, Oliveira, Arlindo, Choi, Youngwon, Paik, Myunghee Cho, Kwon, Yongchan, Lee, Hanbyul, Kim, Beom Joon, Won, Joong-Ho, Islam, Mobarakol, Ren, Hongliang, Robben, David, Suetens, Paul, Gong, Enhao, Niu, Yilin, Xu, Junshen, Pauly, John M., Lucas, Christian, Heinrich, Mattias P., Rivera, Luis C., Castillo, Laura S., Daza, Laura A., Beers, Andrew L., Arbelaezs, Pablo, Maier, Oskar, Chang, Ken, Brown, James M., Kalpathy-Cramer, Jayashree, Zaharchuk, Greg, Wiest, Roland, Reyes, Mauricio
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/65827
Resumo: Performance of models highly depend not only on the used algorithm but also the data set it was applied to. This makes the comparison of newly developed tools to previously published approaches difficult. Either researchers need to implement others' algorithms first, to establish an adequate benchmark on their data, or a direct comparison of new and old techniques is infeasible. The Ischemic Stroke Lesion Segmentation (ISLES) challenge, which has ran now consecutively for 3 years, aims to address this problem of comparability. ISLES 2016 and 2017 focused on lesion outcome prediction after ischemic stroke: By providing a uniformly pre-processed data set, researchers from all over the world could apply their algorithm directly. A total of nine teams participated in ISLES 2015, and 15 teams participated in ISLES 2016. Their performance was evaluated in a fair and transparent way to identify the state-of-the-art among all submissions. Top ranked teams almost always employed deep learning tools, which were predominately convolutional neural networks (CNNs). Despite the great efforts, lesion outcome prediction persists challenging. The annotated data set remains publicly available and new approaches can be compared directly via the online evaluation system, serving as a continuing benchmark (www.isles-challenge.org).
id RCAP_afd104d47575f0cde43300cd9b83542e
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/65827
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling ISLES 2016 and 2017-Benchmarking ischemic stroke lesion outcome prediction based on multispectral MRIstrokestroke outcomemachine learningdeep learningbenchmarkingdatasetsMRIprediction modelsScience & TechnologyPerformance of models highly depend not only on the used algorithm but also the data set it was applied to. This makes the comparison of newly developed tools to previously published approaches difficult. Either researchers need to implement others' algorithms first, to establish an adequate benchmark on their data, or a direct comparison of new and old techniques is infeasible. The Ischemic Stroke Lesion Segmentation (ISLES) challenge, which has ran now consecutively for 3 years, aims to address this problem of comparability. ISLES 2016 and 2017 focused on lesion outcome prediction after ischemic stroke: By providing a uniformly pre-processed data set, researchers from all over the world could apply their algorithm directly. A total of nine teams participated in ISLES 2015, and 15 teams participated in ISLES 2016. Their performance was evaluated in a fair and transparent way to identify the state-of-the-art among all submissions. Top ranked teams almost always employed deep learning tools, which were predominately convolutional neural networks (CNNs). Despite the great efforts, lesion outcome prediction persists challenging. The annotated data set remains publicly available and new approaches can be compared directly via the online evaluation system, serving as a continuing benchmark (www.isles-challenge.org).Fundacao para a Ciencia e Tecnologia (FCT), Portugal (scholarship number PD/BD/113968/2015). FCT with the UID/EEA/04436/2013, by FEDER funds through COMPETE 2020, POCI-01-0145-FEDER-006941. NIH Blueprint for Neuroscience Research (T90DA022759/R90DA023427) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health under award number 5T32EB1680. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. PAC-PRECISE-LISBOA-01-0145-FEDER-016394. FEDER-POR Lisboa 2020-Programa Operacional Regional de Lisboa PORTUGAL 2020 and Fundacao para a Ciencia e a Tecnologia. GPU computing resources provided by the MGH and BWH Center for Clinical Data Science Graduate School for Computing in Medicine and Life Sciences funded by Germany's Excellence Initiative [DFG GSC 235/2]. National Research National Research Foundation of Korea (NRF) MSIT, NRF-2016R1C1B1012002, MSIT, No. 2014R1A4A1007895, NRF-2017R1A2B4008956 Swiss National Science Foundation-DACH 320030L_163363.Frontiers MediaUniversidade do MinhoWinzeck, StefanHakim, ArsanyMcKinley, RichardPinto, José A. A. D. S. R.Alves, VictorSilva, Carlos A.Pisov, MaximKrivov, EgorBelyaev, MikhailMonteiro, MiguelOliveira, ArlindoChoi, YoungwonPaik, Myunghee ChoKwon, YongchanLee, HanbyulKim, Beom JoonWon, Joong-HoIslam, MobarakolRen, HongliangRobben, DavidSuetens, PaulGong, EnhaoNiu, YilinXu, JunshenPauly, John M.Lucas, ChristianHeinrich, Mattias P.Rivera, Luis C.Castillo, Laura S.Daza, Laura A.Beers, Andrew L.Arbelaezs, PabloMaier, OskarChang, KenBrown, James M.Kalpathy-Cramer, JayashreeZaharchuk, GregWiest, RolandReyes, Mauricio20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/65827eng1664-229510.3389/fneur.2018.00679https://www.frontiersin.org/articles/10.3389/fneur.2018.00679/fullinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:42:23Zoai:repositorium.sdum.uminho.pt:1822/65827Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:39:37.653881Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv ISLES 2016 and 2017-Benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI
title ISLES 2016 and 2017-Benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI
spellingShingle ISLES 2016 and 2017-Benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI
Winzeck, Stefan
stroke
stroke outcome
machine learning
deep learning
benchmarking
datasets
MRI
prediction models
Science & Technology
title_short ISLES 2016 and 2017-Benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI
title_full ISLES 2016 and 2017-Benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI
title_fullStr ISLES 2016 and 2017-Benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI
title_full_unstemmed ISLES 2016 and 2017-Benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI
title_sort ISLES 2016 and 2017-Benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI
author Winzeck, Stefan
author_facet Winzeck, Stefan
Hakim, Arsany
McKinley, Richard
Pinto, José A. A. D. S. R.
Alves, Victor
Silva, Carlos A.
Pisov, Maxim
Krivov, Egor
Belyaev, Mikhail
Monteiro, Miguel
Oliveira, Arlindo
Choi, Youngwon
Paik, Myunghee Cho
Kwon, Yongchan
Lee, Hanbyul
Kim, Beom Joon
Won, Joong-Ho
Islam, Mobarakol
Ren, Hongliang
Robben, David
Suetens, Paul
Gong, Enhao
Niu, Yilin
Xu, Junshen
Pauly, John M.
Lucas, Christian
Heinrich, Mattias P.
Rivera, Luis C.
Castillo, Laura S.
Daza, Laura A.
Beers, Andrew L.
Arbelaezs, Pablo
Maier, Oskar
Chang, Ken
Brown, James M.
Kalpathy-Cramer, Jayashree
Zaharchuk, Greg
Wiest, Roland
Reyes, Mauricio
author_role author
author2 Hakim, Arsany
McKinley, Richard
Pinto, José A. A. D. S. R.
Alves, Victor
Silva, Carlos A.
Pisov, Maxim
Krivov, Egor
Belyaev, Mikhail
Monteiro, Miguel
Oliveira, Arlindo
Choi, Youngwon
Paik, Myunghee Cho
Kwon, Yongchan
Lee, Hanbyul
Kim, Beom Joon
Won, Joong-Ho
Islam, Mobarakol
Ren, Hongliang
Robben, David
Suetens, Paul
Gong, Enhao
Niu, Yilin
Xu, Junshen
Pauly, John M.
Lucas, Christian
Heinrich, Mattias P.
Rivera, Luis C.
Castillo, Laura S.
Daza, Laura A.
Beers, Andrew L.
Arbelaezs, Pablo
Maier, Oskar
Chang, Ken
Brown, James M.
Kalpathy-Cramer, Jayashree
Zaharchuk, Greg
Wiest, Roland
Reyes, Mauricio
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Winzeck, Stefan
Hakim, Arsany
McKinley, Richard
Pinto, José A. A. D. S. R.
Alves, Victor
Silva, Carlos A.
Pisov, Maxim
Krivov, Egor
Belyaev, Mikhail
Monteiro, Miguel
Oliveira, Arlindo
Choi, Youngwon
Paik, Myunghee Cho
Kwon, Yongchan
Lee, Hanbyul
Kim, Beom Joon
Won, Joong-Ho
Islam, Mobarakol
Ren, Hongliang
Robben, David
Suetens, Paul
Gong, Enhao
Niu, Yilin
Xu, Junshen
Pauly, John M.
Lucas, Christian
Heinrich, Mattias P.
Rivera, Luis C.
Castillo, Laura S.
Daza, Laura A.
Beers, Andrew L.
Arbelaezs, Pablo
Maier, Oskar
Chang, Ken
Brown, James M.
Kalpathy-Cramer, Jayashree
Zaharchuk, Greg
Wiest, Roland
Reyes, Mauricio
dc.subject.por.fl_str_mv stroke
stroke outcome
machine learning
deep learning
benchmarking
datasets
MRI
prediction models
Science & Technology
topic stroke
stroke outcome
machine learning
deep learning
benchmarking
datasets
MRI
prediction models
Science & Technology
description Performance of models highly depend not only on the used algorithm but also the data set it was applied to. This makes the comparison of newly developed tools to previously published approaches difficult. Either researchers need to implement others' algorithms first, to establish an adequate benchmark on their data, or a direct comparison of new and old techniques is infeasible. The Ischemic Stroke Lesion Segmentation (ISLES) challenge, which has ran now consecutively for 3 years, aims to address this problem of comparability. ISLES 2016 and 2017 focused on lesion outcome prediction after ischemic stroke: By providing a uniformly pre-processed data set, researchers from all over the world could apply their algorithm directly. A total of nine teams participated in ISLES 2015, and 15 teams participated in ISLES 2016. Their performance was evaluated in a fair and transparent way to identify the state-of-the-art among all submissions. Top ranked teams almost always employed deep learning tools, which were predominately convolutional neural networks (CNNs). Despite the great efforts, lesion outcome prediction persists challenging. The annotated data set remains publicly available and new approaches can be compared directly via the online evaluation system, serving as a continuing benchmark (www.isles-challenge.org).
publishDate 2018
dc.date.none.fl_str_mv 2018
2018-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/65827
url http://hdl.handle.net/1822/65827
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1664-2295
10.3389/fneur.2018.00679
https://www.frontiersin.org/articles/10.3389/fneur.2018.00679/full
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132938036576256