G-SOMO
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/119826 |
Resumo: | Douzas, G., Rauch, R., & Bacao, F. (2021). G-SOMO: An oversampling approach based on self-organized maps and geometric SMOTE. Expert Systems with Applications, 183, 1-11. [115230]. https://doi.org/10.1016/j.eswa.2021.115230 |
id |
RCAP_b00e9da0a69af61b94b04f6182f4624f |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/119826 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
G-SOMOAn oversampling approach based on self-organized maps and geometric SMOTEClassificationG-SMOTEImbalanced learningMachine learningOversamplingSOMEngineering(all)Computer Science ApplicationsArtificial IntelligenceDouzas, G., Rauch, R., & Bacao, F. (2021). G-SOMO: An oversampling approach based on self-organized maps and geometric SMOTE. Expert Systems with Applications, 183, 1-11. [115230]. https://doi.org/10.1016/j.eswa.2021.115230Traditional supervised machine learning classifiers are challenged to learn highly skewed data distributions as they are designed to expect classes to equally contribute to the minimization of the classifiers cost function. Moreover, the classifiers design expects equal misclassification costs, causing a bias for overrepresented classes. Different strategies have been proposed to correct this issue. The modification of the data set has become a common practice since the procedure is generalizable to all classifiers. Various algorithms to rebalance the data distribution through the creation of synthetic instances were proposed in the past. In this paper, we propose a new oversampling algorithm named G-SOMO. The algorithm identifies optimal areas to create artificial data instances in an informed manner and utilizes a geometric region during the data generation process to increase their variability. Our empirical results on 69 datasets, validated with different classifiers and metrics against a benchmark of commonly used oversampling methods show that G-SOMO consistently outperforms competing oversampling methods. Additionally, the statistical significance of our results is established.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNDouzas, GeorgiosRauch, ReneBação, Fernando2024-02-17T01:31:53Z2021-11-302021-11-30T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article11application/pdfhttp://hdl.handle.net/10362/119826eng0957-4174PURE: 32101400https://doi.org/10.1016/j.eswa.2021.115230info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:02:24Zoai:run.unl.pt:10362/119826Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:44:12.216916Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
G-SOMO An oversampling approach based on self-organized maps and geometric SMOTE |
title |
G-SOMO |
spellingShingle |
G-SOMO Douzas, Georgios Classification G-SMOTE Imbalanced learning Machine learning Oversampling SOM Engineering(all) Computer Science Applications Artificial Intelligence |
title_short |
G-SOMO |
title_full |
G-SOMO |
title_fullStr |
G-SOMO |
title_full_unstemmed |
G-SOMO |
title_sort |
G-SOMO |
author |
Douzas, Georgios |
author_facet |
Douzas, Georgios Rauch, Rene Bação, Fernando |
author_role |
author |
author2 |
Rauch, Rene Bação, Fernando |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Douzas, Georgios Rauch, Rene Bação, Fernando |
dc.subject.por.fl_str_mv |
Classification G-SMOTE Imbalanced learning Machine learning Oversampling SOM Engineering(all) Computer Science Applications Artificial Intelligence |
topic |
Classification G-SMOTE Imbalanced learning Machine learning Oversampling SOM Engineering(all) Computer Science Applications Artificial Intelligence |
description |
Douzas, G., Rauch, R., & Bacao, F. (2021). G-SOMO: An oversampling approach based on self-organized maps and geometric SMOTE. Expert Systems with Applications, 183, 1-11. [115230]. https://doi.org/10.1016/j.eswa.2021.115230 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-30 2021-11-30T00:00:00Z 2024-02-17T01:31:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/119826 |
url |
http://hdl.handle.net/10362/119826 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0957-4174 PURE: 32101400 https://doi.org/10.1016/j.eswa.2021.115230 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
11 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138049970405376 |