Stimuli-sensitive self-assembled tubules based on lysine-derived surfactants as nanocarriers for proteins
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/62619 |
Resumo: | Drug delivery vectors based on amphiphilic molecules present considerable advantages, namely versatility in physicochemical properties and sensitivity to stimuli. Amino acid-based surfactants, in particular, are rather promising amphiphiles for this purpose1 because of their enhanced biocompatibility compared to conventional surfactants. In addition to forming micelles and vesicles, they can self-organize into other complex supramolecular structures, such as fibers, twisted ribbons, helical tapes and nanotubes.2,3 Herein, we have studied a family of novel anionic double-chained lysine-based surfactants, with variable degree of chain length mismatch. Because of their peculiar structure, these compounds are able to form in water tubular structures with assorted morphologies, as evidenced by video-enhanced light microscopy (VELM), scanning electron microscopy (SEM and cryo-SEM), cryogenic transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM).3 The loading ability of the tubules towards lysozyme, under varying experimental conditions, has been investigated inter alia by differential scanning microcalorimetry, gel electrophoresis and UV/VIS spectroscopy, with the goal of assessing the efficiency of these aggregates as pH- and temperature-sensitive nanocarriers for a model biomolecule. Results on the stability of the native and loaded tubules when in contact with different fluids (serum, artificial saliva, artificial sweat, blood), and on their toxicity in human cells, are also presented and discussed. |
id |
RCAP_b0a29c616eb21548966c1d4b307721f0 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/62619 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Stimuli-sensitive self-assembled tubules based on lysine-derived surfactants as nanocarriers for proteinsCiências Médicas::Biotecnologia MédicaDrug delivery vectors based on amphiphilic molecules present considerable advantages, namely versatility in physicochemical properties and sensitivity to stimuli. Amino acid-based surfactants, in particular, are rather promising amphiphiles for this purpose1 because of their enhanced biocompatibility compared to conventional surfactants. In addition to forming micelles and vesicles, they can self-organize into other complex supramolecular structures, such as fibers, twisted ribbons, helical tapes and nanotubes.2,3 Herein, we have studied a family of novel anionic double-chained lysine-based surfactants, with variable degree of chain length mismatch. Because of their peculiar structure, these compounds are able to form in water tubular structures with assorted morphologies, as evidenced by video-enhanced light microscopy (VELM), scanning electron microscopy (SEM and cryo-SEM), cryogenic transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM).3 The loading ability of the tubules towards lysozyme, under varying experimental conditions, has been investigated inter alia by differential scanning microcalorimetry, gel electrophoresis and UV/VIS spectroscopy, with the goal of assessing the efficiency of these aggregates as pH- and temperature-sensitive nanocarriers for a model biomolecule. Results on the stability of the native and loaded tubules when in contact with different fluids (serum, artificial saliva, artificial sweat, blood), and on their toxicity in human cells, are also presented and discussed.FCT is gratefully acknowledged for financial support through Ph.D. grant SFRH/BD/108629/2015. CIQUP acknowledges financial support from FEDER/COMPETE and FCT through grants UID/QUI/00081/2013, POCI-01-0145-FEDER- 006980 and NORTE-01-0145-FEDER-000028.Universidade do MinhoOliveira, Isabel S.Machado, RicardoAraújo, M.Gomes, Andreia CMarques, Eduardo F.2019-072019-07-01T00:00:00Zconference posterinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/62619enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T07:10:30Zoai:repositorium.sdum.uminho.pt:1822/62619Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T07:10:30Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Stimuli-sensitive self-assembled tubules based on lysine-derived surfactants as nanocarriers for proteins |
title |
Stimuli-sensitive self-assembled tubules based on lysine-derived surfactants as nanocarriers for proteins |
spellingShingle |
Stimuli-sensitive self-assembled tubules based on lysine-derived surfactants as nanocarriers for proteins Oliveira, Isabel S. Ciências Médicas::Biotecnologia Médica |
title_short |
Stimuli-sensitive self-assembled tubules based on lysine-derived surfactants as nanocarriers for proteins |
title_full |
Stimuli-sensitive self-assembled tubules based on lysine-derived surfactants as nanocarriers for proteins |
title_fullStr |
Stimuli-sensitive self-assembled tubules based on lysine-derived surfactants as nanocarriers for proteins |
title_full_unstemmed |
Stimuli-sensitive self-assembled tubules based on lysine-derived surfactants as nanocarriers for proteins |
title_sort |
Stimuli-sensitive self-assembled tubules based on lysine-derived surfactants as nanocarriers for proteins |
author |
Oliveira, Isabel S. |
author_facet |
Oliveira, Isabel S. Machado, Ricardo Araújo, M. Gomes, Andreia C Marques, Eduardo F. |
author_role |
author |
author2 |
Machado, Ricardo Araújo, M. Gomes, Andreia C Marques, Eduardo F. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Oliveira, Isabel S. Machado, Ricardo Araújo, M. Gomes, Andreia C Marques, Eduardo F. |
dc.subject.por.fl_str_mv |
Ciências Médicas::Biotecnologia Médica |
topic |
Ciências Médicas::Biotecnologia Médica |
description |
Drug delivery vectors based on amphiphilic molecules present considerable advantages, namely versatility in physicochemical properties and sensitivity to stimuli. Amino acid-based surfactants, in particular, are rather promising amphiphiles for this purpose1 because of their enhanced biocompatibility compared to conventional surfactants. In addition to forming micelles and vesicles, they can self-organize into other complex supramolecular structures, such as fibers, twisted ribbons, helical tapes and nanotubes.2,3 Herein, we have studied a family of novel anionic double-chained lysine-based surfactants, with variable degree of chain length mismatch. Because of their peculiar structure, these compounds are able to form in water tubular structures with assorted morphologies, as evidenced by video-enhanced light microscopy (VELM), scanning electron microscopy (SEM and cryo-SEM), cryogenic transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM).3 The loading ability of the tubules towards lysozyme, under varying experimental conditions, has been investigated inter alia by differential scanning microcalorimetry, gel electrophoresis and UV/VIS spectroscopy, with the goal of assessing the efficiency of these aggregates as pH- and temperature-sensitive nanocarriers for a model biomolecule. Results on the stability of the native and loaded tubules when in contact with different fluids (serum, artificial saliva, artificial sweat, blood), and on their toxicity in human cells, are also presented and discussed. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07 2019-07-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference poster |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/62619 |
url |
https://hdl.handle.net/1822/62619 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545228990545920 |