Bivariate orthogonal polynomials, 2D Toda lattices and Lax-type pairs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.amc.2017.04.005 http://hdl.handle.net/11449/174467 |
Resumo: | We explore the connection between an infinite system of particles in R2 described by a bi-dimensional version of the Toda equations with the theory of orthogonal polynomials in two variables. We define a 2D Toda lattice in the sense that we consider only one time variable and two space variables describing a mesh of interacting particles over the plane. We show that this 2D Toda lattice is related with the matrix coefficients of the three term relations of bivariate orthogonal polynomials associated with an exponential modification of a positive measure. Moreover, block Lax pairs for 2D Toda lattices are deduced. |
id |
UNSP_a811c3f03bcd1940cc266dec8ef7c509 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/174467 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Bivariate orthogonal polynomials, 2D Toda lattices and Lax-type pairs2D Toda latticeBlock Lax pairsTwo variable orthogonal polynomialsWe explore the connection between an infinite system of particles in R2 described by a bi-dimensional version of the Toda equations with the theory of orthogonal polynomials in two variables. We define a 2D Toda lattice in the sense that we consider only one time variable and two space variables describing a mesh of interacting particles over the plane. We show that this 2D Toda lattice is related with the matrix coefficients of the three term relations of bivariate orthogonal polynomials associated with an exponential modification of a positive measure. Moreover, block Lax pairs for 2D Toda lattices are deduced.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)European Regional Development FundMinisterio de Economía y CompetitividadDepartamento de Matemática Aplicada IBILCE UNESP – Universidade Estadual PaulistaInstituto de Matemáticas – IEMath-GR & Departamento de Matemática Aplicada Universidad de GranadaDepartamento de Matemática Aplicada IBILCE UNESP – Universidade Estadual PaulistaFAPESP: 2014/22571-2CNPq: 305208/2015-2CNPq: 402939/2016-6European Regional Development Fund: MTM2014-53171-PUniversidade Estadual Paulista (Unesp)Universidad de GranadaBracciali, Cleonice F. [UNESP]Pérez, Teresa E.2018-12-11T17:11:15Z2018-12-11T17:11:15Z2017-09-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article142-155application/pdfhttp://dx.doi.org/10.1016/j.amc.2017.04.005Applied Mathematics and Computation, v. 309, p. 142-155.0096-3003http://hdl.handle.net/11449/17446710.1016/j.amc.2017.04.0052-s2.0-850175122562-s2.0-85017512256.pdf83003224526224670000-0002-6823-4204Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Mathematics and Computation1,065info:eu-repo/semantics/openAccess2023-12-09T06:19:55Zoai:repositorio.unesp.br:11449/174467Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:50:58.511971Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Bivariate orthogonal polynomials, 2D Toda lattices and Lax-type pairs |
title |
Bivariate orthogonal polynomials, 2D Toda lattices and Lax-type pairs |
spellingShingle |
Bivariate orthogonal polynomials, 2D Toda lattices and Lax-type pairs Bracciali, Cleonice F. [UNESP] 2D Toda lattice Block Lax pairs Two variable orthogonal polynomials |
title_short |
Bivariate orthogonal polynomials, 2D Toda lattices and Lax-type pairs |
title_full |
Bivariate orthogonal polynomials, 2D Toda lattices and Lax-type pairs |
title_fullStr |
Bivariate orthogonal polynomials, 2D Toda lattices and Lax-type pairs |
title_full_unstemmed |
Bivariate orthogonal polynomials, 2D Toda lattices and Lax-type pairs |
title_sort |
Bivariate orthogonal polynomials, 2D Toda lattices and Lax-type pairs |
author |
Bracciali, Cleonice F. [UNESP] |
author_facet |
Bracciali, Cleonice F. [UNESP] Pérez, Teresa E. |
author_role |
author |
author2 |
Pérez, Teresa E. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidad de Granada |
dc.contributor.author.fl_str_mv |
Bracciali, Cleonice F. [UNESP] Pérez, Teresa E. |
dc.subject.por.fl_str_mv |
2D Toda lattice Block Lax pairs Two variable orthogonal polynomials |
topic |
2D Toda lattice Block Lax pairs Two variable orthogonal polynomials |
description |
We explore the connection between an infinite system of particles in R2 described by a bi-dimensional version of the Toda equations with the theory of orthogonal polynomials in two variables. We define a 2D Toda lattice in the sense that we consider only one time variable and two space variables describing a mesh of interacting particles over the plane. We show that this 2D Toda lattice is related with the matrix coefficients of the three term relations of bivariate orthogonal polynomials associated with an exponential modification of a positive measure. Moreover, block Lax pairs for 2D Toda lattices are deduced. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09-15 2018-12-11T17:11:15Z 2018-12-11T17:11:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.amc.2017.04.005 Applied Mathematics and Computation, v. 309, p. 142-155. 0096-3003 http://hdl.handle.net/11449/174467 10.1016/j.amc.2017.04.005 2-s2.0-85017512256 2-s2.0-85017512256.pdf 8300322452622467 0000-0002-6823-4204 |
url |
http://dx.doi.org/10.1016/j.amc.2017.04.005 http://hdl.handle.net/11449/174467 |
identifier_str_mv |
Applied Mathematics and Computation, v. 309, p. 142-155. 0096-3003 10.1016/j.amc.2017.04.005 2-s2.0-85017512256 2-s2.0-85017512256.pdf 8300322452622467 0000-0002-6823-4204 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Applied Mathematics and Computation 1,065 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
142-155 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129128297136128 |