Trip time prediction in mass transit companies. A machine learning approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , , |
Tipo de documento: | Livro |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://repositorio-aberto.up.pt/handle/10216/6749 |
Resumo: | In this paper we discuss how trip time prediction can be useful foroperational optimization in mass transit companies and which machine learningtechniques can be used to improve results. Firstly, we analyze which departmentsneed trip time prediction and when. Secondly, we review related work and thirdlywe present the analysis of trip time over a particular path. We proceed by presentingexperimental results conducted on real data with the forecasting techniques wefound most adequate, and conclude by discussing guidelines for future work. |
id |
RCAP_b175d610cacdee0eee050fdc15f8cf23 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/6749 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Trip time prediction in mass transit companies. A machine learning approachEngenhariaEngineeringIn this paper we discuss how trip time prediction can be useful foroperational optimization in mass transit companies and which machine learningtechniques can be used to improve results. Firstly, we analyze which departmentsneed trip time prediction and when. Secondly, we review related work and thirdlywe present the analysis of trip time over a particular path. We proceed by presentingexperimental results conducted on real data with the forecasting techniques wefound most adequate, and conclude by discussing guidelines for future work.20052005-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://repositorio-aberto.up.pt/handle/10216/6749engJoão M. MoreiraAlípio JorgeJorge Freire de SousaCarlos Soaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:02:29Zoai:repositorio-aberto.up.pt:10216/6749Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:14:19.079725Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Trip time prediction in mass transit companies. A machine learning approach |
title |
Trip time prediction in mass transit companies. A machine learning approach |
spellingShingle |
Trip time prediction in mass transit companies. A machine learning approach João M. Moreira Engenharia Engineering |
title_short |
Trip time prediction in mass transit companies. A machine learning approach |
title_full |
Trip time prediction in mass transit companies. A machine learning approach |
title_fullStr |
Trip time prediction in mass transit companies. A machine learning approach |
title_full_unstemmed |
Trip time prediction in mass transit companies. A machine learning approach |
title_sort |
Trip time prediction in mass transit companies. A machine learning approach |
author |
João M. Moreira |
author_facet |
João M. Moreira Alípio Jorge Jorge Freire de Sousa Carlos Soares |
author_role |
author |
author2 |
Alípio Jorge Jorge Freire de Sousa Carlos Soares |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
João M. Moreira Alípio Jorge Jorge Freire de Sousa Carlos Soares |
dc.subject.por.fl_str_mv |
Engenharia Engineering |
topic |
Engenharia Engineering |
description |
In this paper we discuss how trip time prediction can be useful foroperational optimization in mass transit companies and which machine learningtechniques can be used to improve results. Firstly, we analyze which departmentsneed trip time prediction and when. Secondly, we review related work and thirdlywe present the analysis of trip time over a particular path. We proceed by presentingexperimental results conducted on real data with the forecasting techniques wefound most adequate, and conclude by discussing guidelines for future work. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005 2005-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/book |
format |
book |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio-aberto.up.pt/handle/10216/6749 |
url |
https://repositorio-aberto.up.pt/handle/10216/6749 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136064301957121 |