A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/12778 |
Resumo: | Classifier performance optimization in machine learning can be stated as a multi-objective optimization problem. In this context, recent works have shown the utility of simple evolutionary multi-objective algorithms (NSGA-II, SPEA2) to conveniently optimize the global performance of different anti-spam filters. The present work extends existing contributions in the spam filtering domain by using three novel indicator-based (SMS-EMOA, CH-EMOA) and decomposition-based (MOEA/D) evolutionary multi objective algorithms. The proposed approaches are used to optimize the performance of a heterogeneous ensemble of classifiers into two different but complementary scenarios: parsimony maximization and e-mail classification under low confidence level. Experimental results using a publicly available standard corpus allowed us to identify interesting conclusions regarding both the utility of rule-based classification filters and the appropriateness of a three-way classification system in the spam filtering domain. |
id |
RCAP_b1bce4bb116386c3ee097008d15db869 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/12778 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A spam filtering multi-objective optimization study covering parsimony maximization and three-way classificationSpam filteringMulti-objective optimizationParsimonyThree-way classificationRule-based classifiersSpamAssassinClassifier performance optimization in machine learning can be stated as a multi-objective optimization problem. In this context, recent works have shown the utility of simple evolutionary multi-objective algorithms (NSGA-II, SPEA2) to conveniently optimize the global performance of different anti-spam filters. The present work extends existing contributions in the spam filtering domain by using three novel indicator-based (SMS-EMOA, CH-EMOA) and decomposition-based (MOEA/D) evolutionary multi objective algorithms. The proposed approaches are used to optimize the performance of a heterogeneous ensemble of classifiers into two different but complementary scenarios: parsimony maximization and e-mail classification under low confidence level. Experimental results using a publicly available standard corpus allowed us to identify interesting conclusions regarding both the utility of rule-based classification filters and the appropriateness of a three-way classification system in the spam filtering domain.Elsevier2017-04-05T15:17:53Z2016-01-01T00:00:00Z20162019-04-12T11:53:57Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/12778eng1568-494610.1016/j.asoc.2016.06.043Basto-Fernandes, V.Yevseyeva, I.Méndez, J. R.Zhao, J.Fdez-Riverola, F.Emmerichd, M. T. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:50:32Zoai:repositorio.iscte-iul.pt:10071/12778Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:24:56.940818Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification |
title |
A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification |
spellingShingle |
A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification Basto-Fernandes, V. Spam filtering Multi-objective optimization Parsimony Three-way classification Rule-based classifiers SpamAssassin |
title_short |
A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification |
title_full |
A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification |
title_fullStr |
A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification |
title_full_unstemmed |
A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification |
title_sort |
A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification |
author |
Basto-Fernandes, V. |
author_facet |
Basto-Fernandes, V. Yevseyeva, I. Méndez, J. R. Zhao, J. Fdez-Riverola, F. Emmerichd, M. T. M. |
author_role |
author |
author2 |
Yevseyeva, I. Méndez, J. R. Zhao, J. Fdez-Riverola, F. Emmerichd, M. T. M. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Basto-Fernandes, V. Yevseyeva, I. Méndez, J. R. Zhao, J. Fdez-Riverola, F. Emmerichd, M. T. M. |
dc.subject.por.fl_str_mv |
Spam filtering Multi-objective optimization Parsimony Three-way classification Rule-based classifiers SpamAssassin |
topic |
Spam filtering Multi-objective optimization Parsimony Three-way classification Rule-based classifiers SpamAssassin |
description |
Classifier performance optimization in machine learning can be stated as a multi-objective optimization problem. In this context, recent works have shown the utility of simple evolutionary multi-objective algorithms (NSGA-II, SPEA2) to conveniently optimize the global performance of different anti-spam filters. The present work extends existing contributions in the spam filtering domain by using three novel indicator-based (SMS-EMOA, CH-EMOA) and decomposition-based (MOEA/D) evolutionary multi objective algorithms. The proposed approaches are used to optimize the performance of a heterogeneous ensemble of classifiers into two different but complementary scenarios: parsimony maximization and e-mail classification under low confidence level. Experimental results using a publicly available standard corpus allowed us to identify interesting conclusions regarding both the utility of rule-based classification filters and the appropriateness of a three-way classification system in the spam filtering domain. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01T00:00:00Z 2016 2017-04-05T15:17:53Z 2019-04-12T11:53:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/12778 |
url |
http://hdl.handle.net/10071/12778 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1568-4946 10.1016/j.asoc.2016.06.043 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134812061040641 |