A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification

Detalhes bibliográficos
Autor(a) principal: Basto-Fernandes, V.
Data de Publicação: 2016
Outros Autores: Yevseyeva, I., Méndez, J. R., Zhao, J., Fdez-Riverola, F., Emmerichd, M. T. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/12778
Resumo: Classifier performance optimization in machine learning can be stated as a multi-objective optimization problem. In this context, recent works have shown the utility of simple evolutionary multi-objective algorithms (NSGA-II, SPEA2) to conveniently optimize the global performance of different anti-spam filters. The present work extends existing contributions in the spam filtering domain by using three novel indicator-based (SMS-EMOA, CH-EMOA) and decomposition-based (MOEA/D) evolutionary multi objective algorithms. The proposed approaches are used to optimize the performance of a heterogeneous ensemble of classifiers into two different but complementary scenarios: parsimony maximization and e-mail classification under low confidence level. Experimental results using a publicly available standard corpus allowed us to identify interesting conclusions regarding both the utility of rule-based classification filters and the appropriateness of a three-way classification system in the spam filtering domain.
id RCAP_b1bce4bb116386c3ee097008d15db869
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/12778
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A spam filtering multi-objective optimization study covering parsimony maximization and three-way classificationSpam filteringMulti-objective optimizationParsimonyThree-way classificationRule-based classifiersSpamAssassinClassifier performance optimization in machine learning can be stated as a multi-objective optimization problem. In this context, recent works have shown the utility of simple evolutionary multi-objective algorithms (NSGA-II, SPEA2) to conveniently optimize the global performance of different anti-spam filters. The present work extends existing contributions in the spam filtering domain by using three novel indicator-based (SMS-EMOA, CH-EMOA) and decomposition-based (MOEA/D) evolutionary multi objective algorithms. The proposed approaches are used to optimize the performance of a heterogeneous ensemble of classifiers into two different but complementary scenarios: parsimony maximization and e-mail classification under low confidence level. Experimental results using a publicly available standard corpus allowed us to identify interesting conclusions regarding both the utility of rule-based classification filters and the appropriateness of a three-way classification system in the spam filtering domain.Elsevier2017-04-05T15:17:53Z2016-01-01T00:00:00Z20162019-04-12T11:53:57Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/12778eng1568-494610.1016/j.asoc.2016.06.043Basto-Fernandes, V.Yevseyeva, I.Méndez, J. R.Zhao, J.Fdez-Riverola, F.Emmerichd, M. T. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:50:32Zoai:repositorio.iscte-iul.pt:10071/12778Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:24:56.940818Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification
title A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification
spellingShingle A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification
Basto-Fernandes, V.
Spam filtering
Multi-objective optimization
Parsimony
Three-way classification
Rule-based classifiers
SpamAssassin
title_short A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification
title_full A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification
title_fullStr A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification
title_full_unstemmed A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification
title_sort A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification
author Basto-Fernandes, V.
author_facet Basto-Fernandes, V.
Yevseyeva, I.
Méndez, J. R.
Zhao, J.
Fdez-Riverola, F.
Emmerichd, M. T. M.
author_role author
author2 Yevseyeva, I.
Méndez, J. R.
Zhao, J.
Fdez-Riverola, F.
Emmerichd, M. T. M.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Basto-Fernandes, V.
Yevseyeva, I.
Méndez, J. R.
Zhao, J.
Fdez-Riverola, F.
Emmerichd, M. T. M.
dc.subject.por.fl_str_mv Spam filtering
Multi-objective optimization
Parsimony
Three-way classification
Rule-based classifiers
SpamAssassin
topic Spam filtering
Multi-objective optimization
Parsimony
Three-way classification
Rule-based classifiers
SpamAssassin
description Classifier performance optimization in machine learning can be stated as a multi-objective optimization problem. In this context, recent works have shown the utility of simple evolutionary multi-objective algorithms (NSGA-II, SPEA2) to conveniently optimize the global performance of different anti-spam filters. The present work extends existing contributions in the spam filtering domain by using three novel indicator-based (SMS-EMOA, CH-EMOA) and decomposition-based (MOEA/D) evolutionary multi objective algorithms. The proposed approaches are used to optimize the performance of a heterogeneous ensemble of classifiers into two different but complementary scenarios: parsimony maximization and e-mail classification under low confidence level. Experimental results using a publicly available standard corpus allowed us to identify interesting conclusions regarding both the utility of rule-based classification filters and the appropriateness of a three-way classification system in the spam filtering domain.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01T00:00:00Z
2016
2017-04-05T15:17:53Z
2019-04-12T11:53:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/12778
url http://hdl.handle.net/10071/12778
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1568-4946
10.1016/j.asoc.2016.06.043
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134812061040641