SMS Spam Filtering Through Optimum-path Forest-based Classifiers

Detalhes bibliográficos
Autor(a) principal: Fernandes, Dheny [UNESP]
Data de Publicação: 2015
Outros Autores: Costa, Kelton A. P. da [UNESP], Almeida, Tiago A., Papa, Joao Paulo [UNESP], IEEE
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/ICMLA.2015.71
http://hdl.handle.net/11449/161765
Resumo: In the past years, SMS messages have shown to be a profitable revenue to the cell-phone industries, being one of the most used communication systems to date. However, this very same scenario has led spammers to concentrate their attentions into spreading spam messages through SMS, thus achieving some success due to the lack of proper tools to cope with this problem. In this paper, we introduced the Optimum-Path Forest classifier to the context of spam filtering in SMS messages, as well as we compared it against with some state-of-the-art supervised pattern recognition techniques. We have shown promising results with an user-friendly classifier, which requires minimum user interaction and less knowledge about the dataset.
id UNSP_9c85806fb35cadd4d4fb09ac0db5372e
oai_identifier_str oai:repositorio.unesp.br:11449/161765
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling SMS Spam Filtering Through Optimum-path Forest-based ClassifiersOptimum-Path ForestSMS SpamIn the past years, SMS messages have shown to be a profitable revenue to the cell-phone industries, being one of the most used communication systems to date. However, this very same scenario has led spammers to concentrate their attentions into spreading spam messages through SMS, thus achieving some success due to the lack of proper tools to cope with this problem. In this paper, we introduced the Optimum-Path Forest classifier to the context of spam filtering in SMS messages, as well as we compared it against with some state-of-the-art supervised pattern recognition techniques. We have shown promising results with an user-friendly classifier, which requires minimum user interaction and less knowledge about the dataset.Sao Paulo State Univ, Dept Comp, Bauru, SP, BrazilUniv Fed Sao Carlos, Dept Comp Sci, Sorocaba, SP, BrazilSao Paulo State Univ, Dept Comp, Bauru, SP, BrazilElsevier B.V.Universidade Estadual Paulista (Unesp)Universidade Federal de São Carlos (UFSCar)Fernandes, Dheny [UNESP]Costa, Kelton A. P. da [UNESP]Almeida, Tiago A.Papa, Joao Paulo [UNESP]IEEE2018-11-26T16:48:31Z2018-11-26T16:48:31Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject133-137http://dx.doi.org/10.1109/ICMLA.2015.712015 Ieee 14th International Conference On Machine Learning And Applications (icmla). Amsterdam: Elsevier Science Bv, p. 133-137, 2015.http://hdl.handle.net/11449/16176510.1109/ICMLA.2015.71WOS:000380483600022Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2015 Ieee 14th International Conference On Machine Learning And Applications (icmla)info:eu-repo/semantics/openAccess2024-04-23T16:11:33Zoai:repositorio.unesp.br:11449/161765Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:41:35.979886Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv SMS Spam Filtering Through Optimum-path Forest-based Classifiers
title SMS Spam Filtering Through Optimum-path Forest-based Classifiers
spellingShingle SMS Spam Filtering Through Optimum-path Forest-based Classifiers
Fernandes, Dheny [UNESP]
Optimum-Path Forest
SMS Spam
title_short SMS Spam Filtering Through Optimum-path Forest-based Classifiers
title_full SMS Spam Filtering Through Optimum-path Forest-based Classifiers
title_fullStr SMS Spam Filtering Through Optimum-path Forest-based Classifiers
title_full_unstemmed SMS Spam Filtering Through Optimum-path Forest-based Classifiers
title_sort SMS Spam Filtering Through Optimum-path Forest-based Classifiers
author Fernandes, Dheny [UNESP]
author_facet Fernandes, Dheny [UNESP]
Costa, Kelton A. P. da [UNESP]
Almeida, Tiago A.
Papa, Joao Paulo [UNESP]
IEEE
author_role author
author2 Costa, Kelton A. P. da [UNESP]
Almeida, Tiago A.
Papa, Joao Paulo [UNESP]
IEEE
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal de São Carlos (UFSCar)
dc.contributor.author.fl_str_mv Fernandes, Dheny [UNESP]
Costa, Kelton A. P. da [UNESP]
Almeida, Tiago A.
Papa, Joao Paulo [UNESP]
IEEE
dc.subject.por.fl_str_mv Optimum-Path Forest
SMS Spam
topic Optimum-Path Forest
SMS Spam
description In the past years, SMS messages have shown to be a profitable revenue to the cell-phone industries, being one of the most used communication systems to date. However, this very same scenario has led spammers to concentrate their attentions into spreading spam messages through SMS, thus achieving some success due to the lack of proper tools to cope with this problem. In this paper, we introduced the Optimum-Path Forest classifier to the context of spam filtering in SMS messages, as well as we compared it against with some state-of-the-art supervised pattern recognition techniques. We have shown promising results with an user-friendly classifier, which requires minimum user interaction and less knowledge about the dataset.
publishDate 2015
dc.date.none.fl_str_mv 2015-01-01
2018-11-26T16:48:31Z
2018-11-26T16:48:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/ICMLA.2015.71
2015 Ieee 14th International Conference On Machine Learning And Applications (icmla). Amsterdam: Elsevier Science Bv, p. 133-137, 2015.
http://hdl.handle.net/11449/161765
10.1109/ICMLA.2015.71
WOS:000380483600022
url http://dx.doi.org/10.1109/ICMLA.2015.71
http://hdl.handle.net/11449/161765
identifier_str_mv 2015 Ieee 14th International Conference On Machine Learning And Applications (icmla). Amsterdam: Elsevier Science Bv, p. 133-137, 2015.
10.1109/ICMLA.2015.71
WOS:000380483600022
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2015 Ieee 14th International Conference On Machine Learning And Applications (icmla)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 133-137
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129347691741184