SMS Spam Filtering Through Optimum-path Forest-based Classifiers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/ICMLA.2015.71 http://hdl.handle.net/11449/161765 |
Resumo: | In the past years, SMS messages have shown to be a profitable revenue to the cell-phone industries, being one of the most used communication systems to date. However, this very same scenario has led spammers to concentrate their attentions into spreading spam messages through SMS, thus achieving some success due to the lack of proper tools to cope with this problem. In this paper, we introduced the Optimum-Path Forest classifier to the context of spam filtering in SMS messages, as well as we compared it against with some state-of-the-art supervised pattern recognition techniques. We have shown promising results with an user-friendly classifier, which requires minimum user interaction and less knowledge about the dataset. |
id |
UNSP_9c85806fb35cadd4d4fb09ac0db5372e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/161765 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
SMS Spam Filtering Through Optimum-path Forest-based ClassifiersOptimum-Path ForestSMS SpamIn the past years, SMS messages have shown to be a profitable revenue to the cell-phone industries, being one of the most used communication systems to date. However, this very same scenario has led spammers to concentrate their attentions into spreading spam messages through SMS, thus achieving some success due to the lack of proper tools to cope with this problem. In this paper, we introduced the Optimum-Path Forest classifier to the context of spam filtering in SMS messages, as well as we compared it against with some state-of-the-art supervised pattern recognition techniques. We have shown promising results with an user-friendly classifier, which requires minimum user interaction and less knowledge about the dataset.Sao Paulo State Univ, Dept Comp, Bauru, SP, BrazilUniv Fed Sao Carlos, Dept Comp Sci, Sorocaba, SP, BrazilSao Paulo State Univ, Dept Comp, Bauru, SP, BrazilElsevier B.V.Universidade Estadual Paulista (Unesp)Universidade Federal de São Carlos (UFSCar)Fernandes, Dheny [UNESP]Costa, Kelton A. P. da [UNESP]Almeida, Tiago A.Papa, Joao Paulo [UNESP]IEEE2018-11-26T16:48:31Z2018-11-26T16:48:31Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject133-137http://dx.doi.org/10.1109/ICMLA.2015.712015 Ieee 14th International Conference On Machine Learning And Applications (icmla). Amsterdam: Elsevier Science Bv, p. 133-137, 2015.http://hdl.handle.net/11449/16176510.1109/ICMLA.2015.71WOS:000380483600022Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2015 Ieee 14th International Conference On Machine Learning And Applications (icmla)info:eu-repo/semantics/openAccess2024-04-23T16:11:33Zoai:repositorio.unesp.br:11449/161765Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:41:35.979886Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
SMS Spam Filtering Through Optimum-path Forest-based Classifiers |
title |
SMS Spam Filtering Through Optimum-path Forest-based Classifiers |
spellingShingle |
SMS Spam Filtering Through Optimum-path Forest-based Classifiers Fernandes, Dheny [UNESP] Optimum-Path Forest SMS Spam |
title_short |
SMS Spam Filtering Through Optimum-path Forest-based Classifiers |
title_full |
SMS Spam Filtering Through Optimum-path Forest-based Classifiers |
title_fullStr |
SMS Spam Filtering Through Optimum-path Forest-based Classifiers |
title_full_unstemmed |
SMS Spam Filtering Through Optimum-path Forest-based Classifiers |
title_sort |
SMS Spam Filtering Through Optimum-path Forest-based Classifiers |
author |
Fernandes, Dheny [UNESP] |
author_facet |
Fernandes, Dheny [UNESP] Costa, Kelton A. P. da [UNESP] Almeida, Tiago A. Papa, Joao Paulo [UNESP] IEEE |
author_role |
author |
author2 |
Costa, Kelton A. P. da [UNESP] Almeida, Tiago A. Papa, Joao Paulo [UNESP] IEEE |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal de São Carlos (UFSCar) |
dc.contributor.author.fl_str_mv |
Fernandes, Dheny [UNESP] Costa, Kelton A. P. da [UNESP] Almeida, Tiago A. Papa, Joao Paulo [UNESP] IEEE |
dc.subject.por.fl_str_mv |
Optimum-Path Forest SMS Spam |
topic |
Optimum-Path Forest SMS Spam |
description |
In the past years, SMS messages have shown to be a profitable revenue to the cell-phone industries, being one of the most used communication systems to date. However, this very same scenario has led spammers to concentrate their attentions into spreading spam messages through SMS, thus achieving some success due to the lack of proper tools to cope with this problem. In this paper, we introduced the Optimum-Path Forest classifier to the context of spam filtering in SMS messages, as well as we compared it against with some state-of-the-art supervised pattern recognition techniques. We have shown promising results with an user-friendly classifier, which requires minimum user interaction and less knowledge about the dataset. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01-01 2018-11-26T16:48:31Z 2018-11-26T16:48:31Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/ICMLA.2015.71 2015 Ieee 14th International Conference On Machine Learning And Applications (icmla). Amsterdam: Elsevier Science Bv, p. 133-137, 2015. http://hdl.handle.net/11449/161765 10.1109/ICMLA.2015.71 WOS:000380483600022 |
url |
http://dx.doi.org/10.1109/ICMLA.2015.71 http://hdl.handle.net/11449/161765 |
identifier_str_mv |
2015 Ieee 14th International Conference On Machine Learning And Applications (icmla). Amsterdam: Elsevier Science Bv, p. 133-137, 2015. 10.1109/ICMLA.2015.71 WOS:000380483600022 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2015 Ieee 14th International Conference On Machine Learning And Applications (icmla) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
133-137 |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129347691741184 |