A Machine Learning Approach to Predict Air Quality in California
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/103211 |
Resumo: | Castelli, M., Clemente, F. M., Popovič, A., Silva, S., & Vanneschi, L. (2020). A Machine Learning Approach to Predict Air Quality in California. Complexity, 2020, 1-23. [8049504]. https://doi.org/10.1155/2020/8049504 |
id |
RCAP_b2363416cd7c588fbaf6433558f15fb3 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/103211 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Machine Learning Approach to Predict Air Quality in CaliforniaComputer Science(all)GeneralSDG 11 - Sustainable Cities and CommunitiesCastelli, M., Clemente, F. M., Popovič, A., Silva, S., & Vanneschi, L. (2020). A Machine Learning Approach to Predict Air Quality in California. Complexity, 2020, 1-23. [8049504]. https://doi.org/10.1155/2020/8049504Predicting air quality is a complex task due to the dynamic nature, volatility, and high variability in time and space of pollutants and particulates. At the same time, being able to model, predict, and monitor air quality is becoming more and more relevant, especially in urban areas, due to the observed critical impact of air pollution on citizens' health and the environment. In this paper, we employ a popular machine learning method, support vector regression (SVR), to forecast pollutant and particulate levels and to predict the air quality index (AQI). Among the various tested alternatives, radial basis function (RBF) was the type of kernel that allowed SVR to obtain the most accurate predictions. Using the whole set of available variables revealed a more successful strategy than selecting features using principal component analysis. The presented results demonstrate that SVR with RBF kernel allows us to accurately predict hourly pollutant concentrations, like carbon monoxide, sulfur dioxide, nitrogen dioxide, ground-level ozone, and particulate matter 2.5, as well as the hourly AQI for the state of California. Classification into six AQI categories defined by the US Environmental Protection Agency was performed with an accuracy of 94.1% on unseen validation data.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNCastelli, MauroClemente, Fabiana MartinsPopovič, AlešSilva, SaraVanneschi, Leonardo2020-09-01T23:23:21Z2020-08-042020-08-04T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article23application/pdfhttp://hdl.handle.net/10362/103211eng1076-2787PURE: 19656506https://doi.org/10.1155/2020/8049504info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:48:39Zoai:run.unl.pt:10362/103211Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:39:49.415489Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Machine Learning Approach to Predict Air Quality in California |
title |
A Machine Learning Approach to Predict Air Quality in California |
spellingShingle |
A Machine Learning Approach to Predict Air Quality in California Castelli, Mauro Computer Science(all) General SDG 11 - Sustainable Cities and Communities |
title_short |
A Machine Learning Approach to Predict Air Quality in California |
title_full |
A Machine Learning Approach to Predict Air Quality in California |
title_fullStr |
A Machine Learning Approach to Predict Air Quality in California |
title_full_unstemmed |
A Machine Learning Approach to Predict Air Quality in California |
title_sort |
A Machine Learning Approach to Predict Air Quality in California |
author |
Castelli, Mauro |
author_facet |
Castelli, Mauro Clemente, Fabiana Martins Popovič, Aleš Silva, Sara Vanneschi, Leonardo |
author_role |
author |
author2 |
Clemente, Fabiana Martins Popovič, Aleš Silva, Sara Vanneschi, Leonardo |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Castelli, Mauro Clemente, Fabiana Martins Popovič, Aleš Silva, Sara Vanneschi, Leonardo |
dc.subject.por.fl_str_mv |
Computer Science(all) General SDG 11 - Sustainable Cities and Communities |
topic |
Computer Science(all) General SDG 11 - Sustainable Cities and Communities |
description |
Castelli, M., Clemente, F. M., Popovič, A., Silva, S., & Vanneschi, L. (2020). A Machine Learning Approach to Predict Air Quality in California. Complexity, 2020, 1-23. [8049504]. https://doi.org/10.1155/2020/8049504 |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09-01T23:23:21Z 2020-08-04 2020-08-04T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/103211 |
url |
http://hdl.handle.net/10362/103211 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1076-2787 PURE: 19656506 https://doi.org/10.1155/2020/8049504 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
23 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138014449893376 |