The power fractional calculus: first definitions and properties with applications to power fractional differential equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/35144 |
Resumo: | Using the Laplace transform method and the convolution theorem, we introduce new and more general definitions for fractional operators with non-singular kernels, extending well-known concepts existing in the literature. The new operators are based on a generalization of the Mittag–Leffler function, characterized by the presence of a key parameter p. This power parameter p is important to enable researchers to choose an adequate notion of the derivative that properly represents the reality under study, to provide good mathematical models, and to predict future dynamic behaviors. The fundamental properties of the new operators are investigated and rigorously proved. As an application, we solve a Caputo and a Riemann–Liouville fractional differential equation. |
id |
RCAP_b28d9f40f5f2cc4d673c936838f86434 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/35144 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The power fractional calculus: first definitions and properties with applications to power fractional differential equationsGeneralized Mittag–Leffler functionFractional calculusNon-singular kernelsIntegro-differential equationsUsing the Laplace transform method and the convolution theorem, we introduce new and more general definitions for fractional operators with non-singular kernels, extending well-known concepts existing in the literature. The new operators are based on a generalization of the Mittag–Leffler function, characterized by the presence of a key parameter p. This power parameter p is important to enable researchers to choose an adequate notion of the derivative that properly represents the reality under study, to provide good mathematical models, and to predict future dynamic behaviors. The fundamental properties of the new operators are investigated and rigorously proved. As an application, we solve a Caputo and a Riemann–Liouville fractional differential equation.MDPI2022-11-07T11:21:09Z2022-10-01T00:00:00Z2022-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35144eng10.3390/math10193594Lotfi, El MehdiZine, HoussineTorres, Delfim F. M.Yousfi, Nourainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:07:24Zoai:ria.ua.pt:10773/35144Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:07.649752Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The power fractional calculus: first definitions and properties with applications to power fractional differential equations |
title |
The power fractional calculus: first definitions and properties with applications to power fractional differential equations |
spellingShingle |
The power fractional calculus: first definitions and properties with applications to power fractional differential equations Lotfi, El Mehdi Generalized Mittag–Leffler function Fractional calculus Non-singular kernels Integro-differential equations |
title_short |
The power fractional calculus: first definitions and properties with applications to power fractional differential equations |
title_full |
The power fractional calculus: first definitions and properties with applications to power fractional differential equations |
title_fullStr |
The power fractional calculus: first definitions and properties with applications to power fractional differential equations |
title_full_unstemmed |
The power fractional calculus: first definitions and properties with applications to power fractional differential equations |
title_sort |
The power fractional calculus: first definitions and properties with applications to power fractional differential equations |
author |
Lotfi, El Mehdi |
author_facet |
Lotfi, El Mehdi Zine, Houssine Torres, Delfim F. M. Yousfi, Noura |
author_role |
author |
author2 |
Zine, Houssine Torres, Delfim F. M. Yousfi, Noura |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Lotfi, El Mehdi Zine, Houssine Torres, Delfim F. M. Yousfi, Noura |
dc.subject.por.fl_str_mv |
Generalized Mittag–Leffler function Fractional calculus Non-singular kernels Integro-differential equations |
topic |
Generalized Mittag–Leffler function Fractional calculus Non-singular kernels Integro-differential equations |
description |
Using the Laplace transform method and the convolution theorem, we introduce new and more general definitions for fractional operators with non-singular kernels, extending well-known concepts existing in the literature. The new operators are based on a generalization of the Mittag–Leffler function, characterized by the presence of a key parameter p. This power parameter p is important to enable researchers to choose an adequate notion of the derivative that properly represents the reality under study, to provide good mathematical models, and to predict future dynamic behaviors. The fundamental properties of the new operators are investigated and rigorously proved. As an application, we solve a Caputo and a Riemann–Liouville fractional differential equation. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-07T11:21:09Z 2022-10-01T00:00:00Z 2022-10-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/35144 |
url |
http://hdl.handle.net/10773/35144 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.3390/math10193594 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137716511703040 |