The power fractional calculus: first definitions and properties with applications to power fractional differential equations

Detalhes bibliográficos
Autor(a) principal: Lotfi, El Mehdi
Data de Publicação: 2022
Outros Autores: Zine, Houssine, Torres, Delfim F. M., Yousfi, Noura
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/35144
Resumo: Using the Laplace transform method and the convolution theorem, we introduce new and more general definitions for fractional operators with non-singular kernels, extending well-known concepts existing in the literature. The new operators are based on a generalization of the Mittag–Leffler function, characterized by the presence of a key parameter p. This power parameter p is important to enable researchers to choose an adequate notion of the derivative that properly represents the reality under study, to provide good mathematical models, and to predict future dynamic behaviors. The fundamental properties of the new operators are investigated and rigorously proved. As an application, we solve a Caputo and a Riemann–Liouville fractional differential equation.
id RCAP_b28d9f40f5f2cc4d673c936838f86434
oai_identifier_str oai:ria.ua.pt:10773/35144
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The power fractional calculus: first definitions and properties with applications to power fractional differential equationsGeneralized Mittag–Leffler functionFractional calculusNon-singular kernelsIntegro-differential equationsUsing the Laplace transform method and the convolution theorem, we introduce new and more general definitions for fractional operators with non-singular kernels, extending well-known concepts existing in the literature. The new operators are based on a generalization of the Mittag–Leffler function, characterized by the presence of a key parameter p. This power parameter p is important to enable researchers to choose an adequate notion of the derivative that properly represents the reality under study, to provide good mathematical models, and to predict future dynamic behaviors. The fundamental properties of the new operators are investigated and rigorously proved. As an application, we solve a Caputo and a Riemann–Liouville fractional differential equation.MDPI2022-11-07T11:21:09Z2022-10-01T00:00:00Z2022-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35144eng10.3390/math10193594Lotfi, El MehdiZine, HoussineTorres, Delfim F. M.Yousfi, Nourainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:07:24Zoai:ria.ua.pt:10773/35144Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:07.649752Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The power fractional calculus: first definitions and properties with applications to power fractional differential equations
title The power fractional calculus: first definitions and properties with applications to power fractional differential equations
spellingShingle The power fractional calculus: first definitions and properties with applications to power fractional differential equations
Lotfi, El Mehdi
Generalized Mittag–Leffler function
Fractional calculus
Non-singular kernels
Integro-differential equations
title_short The power fractional calculus: first definitions and properties with applications to power fractional differential equations
title_full The power fractional calculus: first definitions and properties with applications to power fractional differential equations
title_fullStr The power fractional calculus: first definitions and properties with applications to power fractional differential equations
title_full_unstemmed The power fractional calculus: first definitions and properties with applications to power fractional differential equations
title_sort The power fractional calculus: first definitions and properties with applications to power fractional differential equations
author Lotfi, El Mehdi
author_facet Lotfi, El Mehdi
Zine, Houssine
Torres, Delfim F. M.
Yousfi, Noura
author_role author
author2 Zine, Houssine
Torres, Delfim F. M.
Yousfi, Noura
author2_role author
author
author
dc.contributor.author.fl_str_mv Lotfi, El Mehdi
Zine, Houssine
Torres, Delfim F. M.
Yousfi, Noura
dc.subject.por.fl_str_mv Generalized Mittag–Leffler function
Fractional calculus
Non-singular kernels
Integro-differential equations
topic Generalized Mittag–Leffler function
Fractional calculus
Non-singular kernels
Integro-differential equations
description Using the Laplace transform method and the convolution theorem, we introduce new and more general definitions for fractional operators with non-singular kernels, extending well-known concepts existing in the literature. The new operators are based on a generalization of the Mittag–Leffler function, characterized by the presence of a key parameter p. This power parameter p is important to enable researchers to choose an adequate notion of the derivative that properly represents the reality under study, to provide good mathematical models, and to predict future dynamic behaviors. The fundamental properties of the new operators are investigated and rigorously proved. As an application, we solve a Caputo and a Riemann–Liouville fractional differential equation.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-07T11:21:09Z
2022-10-01T00:00:00Z
2022-10-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/35144
url http://hdl.handle.net/10773/35144
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.3390/math10193594
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137716511703040