The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations

Detalhes bibliográficos
Autor(a) principal: Martins-Ferreira, Nelson
Data de Publicação: 2018
Outros Autores: Montoli, Andrea, Sobral, Manuela
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/89426
https://doi.org/10.1007/s00233-018-9962-1
Resumo: We show that the Nine Lemma holds for special Schreier extensions of monoids with operations. This fact is used to obtain a push forward construction for special Schreier extensions with abelian kernel. This construction permits to give a functorial description of the Baer sum of such extensions.
id RCAP_b32bc8f37cc659164ebf61ced2fa698c
oai_identifier_str oai:estudogeral.uc.pt:10316/89426
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operationsMonoids with operations; Special Schreier extension; Nine Lemma; Push forward; Baer sumWe show that the Nine Lemma holds for special Schreier extensions of monoids with operations. This fact is used to obtain a push forward construction for special Schreier extensions with abelian kernel. This construction permits to give a functorial description of the Baer sum of such extensions.Springer Verlag2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/89426http://hdl.handle.net/10316/89426https://doi.org/10.1007/s00233-018-9962-1enghttps://link.springer.com/article/10.1007/s00233-018-9962-1Martins-Ferreira, NelsonMontoli, AndreaSobral, Manuelainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T06:33:52Zoai:estudogeral.uc.pt:10316/89426Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:09:44.817128Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations
title The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations
spellingShingle The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations
Martins-Ferreira, Nelson
Monoids with operations; Special Schreier extension; Nine Lemma; Push forward; Baer sum
title_short The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations
title_full The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations
title_fullStr The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations
title_full_unstemmed The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations
title_sort The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations
author Martins-Ferreira, Nelson
author_facet Martins-Ferreira, Nelson
Montoli, Andrea
Sobral, Manuela
author_role author
author2 Montoli, Andrea
Sobral, Manuela
author2_role author
author
dc.contributor.author.fl_str_mv Martins-Ferreira, Nelson
Montoli, Andrea
Sobral, Manuela
dc.subject.por.fl_str_mv Monoids with operations; Special Schreier extension; Nine Lemma; Push forward; Baer sum
topic Monoids with operations; Special Schreier extension; Nine Lemma; Push forward; Baer sum
description We show that the Nine Lemma holds for special Schreier extensions of monoids with operations. This fact is used to obtain a push forward construction for special Schreier extensions with abelian kernel. This construction permits to give a functorial description of the Baer sum of such extensions.
publishDate 2018
dc.date.none.fl_str_mv 2018
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/89426
http://hdl.handle.net/10316/89426
https://doi.org/10.1007/s00233-018-9962-1
url http://hdl.handle.net/10316/89426
https://doi.org/10.1007/s00233-018-9962-1
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://link.springer.com/article/10.1007/s00233-018-9962-1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133992282226688