The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/89426 https://doi.org/10.1007/s00233-018-9962-1 |
Resumo: | We show that the Nine Lemma holds for special Schreier extensions of monoids with operations. This fact is used to obtain a push forward construction for special Schreier extensions with abelian kernel. This construction permits to give a functorial description of the Baer sum of such extensions. |
id |
RCAP_b32bc8f37cc659164ebf61ced2fa698c |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/89426 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operationsMonoids with operations; Special Schreier extension; Nine Lemma; Push forward; Baer sumWe show that the Nine Lemma holds for special Schreier extensions of monoids with operations. This fact is used to obtain a push forward construction for special Schreier extensions with abelian kernel. This construction permits to give a functorial description of the Baer sum of such extensions.Springer Verlag2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/89426http://hdl.handle.net/10316/89426https://doi.org/10.1007/s00233-018-9962-1enghttps://link.springer.com/article/10.1007/s00233-018-9962-1Martins-Ferreira, NelsonMontoli, AndreaSobral, Manuelainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T06:33:52Zoai:estudogeral.uc.pt:10316/89426Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:09:44.817128Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations |
title |
The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations |
spellingShingle |
The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations Martins-Ferreira, Nelson Monoids with operations; Special Schreier extension; Nine Lemma; Push forward; Baer sum |
title_short |
The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations |
title_full |
The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations |
title_fullStr |
The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations |
title_full_unstemmed |
The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations |
title_sort |
The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations |
author |
Martins-Ferreira, Nelson |
author_facet |
Martins-Ferreira, Nelson Montoli, Andrea Sobral, Manuela |
author_role |
author |
author2 |
Montoli, Andrea Sobral, Manuela |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Martins-Ferreira, Nelson Montoli, Andrea Sobral, Manuela |
dc.subject.por.fl_str_mv |
Monoids with operations; Special Schreier extension; Nine Lemma; Push forward; Baer sum |
topic |
Monoids with operations; Special Schreier extension; Nine Lemma; Push forward; Baer sum |
description |
We show that the Nine Lemma holds for special Schreier extensions of monoids with operations. This fact is used to obtain a push forward construction for special Schreier extensions with abelian kernel. This construction permits to give a functorial description of the Baer sum of such extensions. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/89426 http://hdl.handle.net/10316/89426 https://doi.org/10.1007/s00233-018-9962-1 |
url |
http://hdl.handle.net/10316/89426 https://doi.org/10.1007/s00233-018-9962-1 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://link.springer.com/article/10.1007/s00233-018-9962-1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133992282226688 |