A categorical invariant of flow equivalence of shifts

Detalhes bibliográficos
Autor(a) principal: Costa, Alfredo
Data de Publicação: 2013
Outros Autores: Steinberg, Benjamin
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/43881
https://doi.org/10.1017/etds.2014.74
Resumo: We prove that the Karoubi envelope of a shift - defined as the Karoubi envelope of the syntactic semigroup of the language of blocks of the shift -is, up to natural equivalence of categories, an invariant of flow equivalence. More precisely, we show that the action of the Karoubi envelope on the Krieger cover of the shift is a flow invariant. An analogous result concerning the Fischer cover of a synchronizing shift is also obtained. From these main results, several flow equivalence invariants - some new and some old - are obtained. We also show that the Karoubi envelope is, in a natural sense, the best possible syntactic invariant of flow equivalence of sofic shifts. Another application concerns the classification of Markov-Dyck and Markov-Motzkin shifts: it is shown that, under mild conditions, two graphs define flow equivalent shifts if and only if they are isomorphic. Shifts with property (A) and their associated semigroups, introduced by Wolfgang Krieger, are interpreted in terms of the Karoubi envelope, yielding a proof of the flow invariance of the associated semigroups in the cases usually considered (a result recently announced by Krieger), and also a proof that property (A) is decidable for sofic shifts.
id RCAP_b39fcaa05741eed621f7969109c84a48
oai_identifier_str oai:estudogeral.uc.pt:10316/43881
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A categorical invariant of flow equivalence of shiftsWe prove that the Karoubi envelope of a shift - defined as the Karoubi envelope of the syntactic semigroup of the language of blocks of the shift -is, up to natural equivalence of categories, an invariant of flow equivalence. More precisely, we show that the action of the Karoubi envelope on the Krieger cover of the shift is a flow invariant. An analogous result concerning the Fischer cover of a synchronizing shift is also obtained. From these main results, several flow equivalence invariants - some new and some old - are obtained. We also show that the Karoubi envelope is, in a natural sense, the best possible syntactic invariant of flow equivalence of sofic shifts. Another application concerns the classification of Markov-Dyck and Markov-Motzkin shifts: it is shown that, under mild conditions, two graphs define flow equivalent shifts if and only if they are isomorphic. Shifts with property (A) and their associated semigroups, introduced by Wolfgang Krieger, are interpreted in terms of the Karoubi envelope, yielding a proof of the flow invariance of the associated semigroups in the cases usually considered (a result recently announced by Krieger), and also a proof that property (A) is decidable for sofic shifts.Cambridge University Press2013-04-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/43881http://hdl.handle.net/10316/43881https://doi.org/10.1017/etds.2014.74https://doi.org/10.1017/etds.2014.74enghttps://doi.org/10.1017/etds.2014.74Costa, AlfredoSteinberg, Benjamininfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-06-29T10:03:06Zoai:estudogeral.uc.pt:10316/43881Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:28.752110Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A categorical invariant of flow equivalence of shifts
title A categorical invariant of flow equivalence of shifts
spellingShingle A categorical invariant of flow equivalence of shifts
Costa, Alfredo
title_short A categorical invariant of flow equivalence of shifts
title_full A categorical invariant of flow equivalence of shifts
title_fullStr A categorical invariant of flow equivalence of shifts
title_full_unstemmed A categorical invariant of flow equivalence of shifts
title_sort A categorical invariant of flow equivalence of shifts
author Costa, Alfredo
author_facet Costa, Alfredo
Steinberg, Benjamin
author_role author
author2 Steinberg, Benjamin
author2_role author
dc.contributor.author.fl_str_mv Costa, Alfredo
Steinberg, Benjamin
description We prove that the Karoubi envelope of a shift - defined as the Karoubi envelope of the syntactic semigroup of the language of blocks of the shift -is, up to natural equivalence of categories, an invariant of flow equivalence. More precisely, we show that the action of the Karoubi envelope on the Krieger cover of the shift is a flow invariant. An analogous result concerning the Fischer cover of a synchronizing shift is also obtained. From these main results, several flow equivalence invariants - some new and some old - are obtained. We also show that the Karoubi envelope is, in a natural sense, the best possible syntactic invariant of flow equivalence of sofic shifts. Another application concerns the classification of Markov-Dyck and Markov-Motzkin shifts: it is shown that, under mild conditions, two graphs define flow equivalent shifts if and only if they are isomorphic. Shifts with property (A) and their associated semigroups, introduced by Wolfgang Krieger, are interpreted in terms of the Karoubi envelope, yielding a proof of the flow invariance of the associated semigroups in the cases usually considered (a result recently announced by Krieger), and also a proof that property (A) is decidable for sofic shifts.
publishDate 2013
dc.date.none.fl_str_mv 2013-04-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/43881
http://hdl.handle.net/10316/43881
https://doi.org/10.1017/etds.2014.74
https://doi.org/10.1017/etds.2014.74
url http://hdl.handle.net/10316/43881
https://doi.org/10.1017/etds.2014.74
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://doi.org/10.1017/etds.2014.74
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133821583491073