The Russell-Prawitz embedding and the atomization of universal instantiation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/75419 |
Resumo: | Given the recent interest in the fragment of system F where universal instantiation is restricted to atomic formulas, a fragment nowadays named system Fat, we study directly in system F new conversions whose purpose is to enforce that restriction. We show some benefits of these new atomization conversions: (i) they help achieving strict simulation of proof reduction by means of the Russell–Prawitz embedding of IPC into system F, (ii) they are not stronger than a certain ‘dinaturality’ conversion known to generate a consistent equality of proofs, (iii) they provide the bridge between the Russell–Prawitz embedding and another translation, due to the authors, of IPC directly into system Fat and (iv) they give means for explaining why the Russell–Prawitz translation achieves strict simulation whereas the translation into Fat does not. |
id |
RCAP_b3e7c9817fa45141cf4891d358cce1a4 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/75419 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The Russell-Prawitz embedding and the atomization of universal instantiationIntuitionistic propositional calculusSystem FPredicative polymorphismRussell-Prawitz translationProof reductionCiências Naturais::MatemáticasScience & TechnologyGiven the recent interest in the fragment of system F where universal instantiation is restricted to atomic formulas, a fragment nowadays named system Fat, we study directly in system F new conversions whose purpose is to enforce that restriction. We show some benefits of these new atomization conversions: (i) they help achieving strict simulation of proof reduction by means of the Russell–Prawitz embedding of IPC into system F, (ii) they are not stronger than a certain ‘dinaturality’ conversion known to generate a consistent equality of proofs, (iii) they provide the bridge between the Russell–Prawitz embedding and another translation, due to the authors, of IPC directly into system Fat and (iv) they give means for explaining why the Russell–Prawitz translation achieves strict simulation whereas the translation into Fat does not.FCT (UIDB/00013/2020 and UIDP/00013/2020, UID/MAT/04561/2019, UID/CEC/00408/2019)Oxford University PressUniversidade do MinhoEspírito Santo, JoséFerreira, Gilda20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/75419eng1367-07511368-989410.1093/jigpal/jzaa025https://academic.oup.com/jigpal/article-abstract/29/5/823/5877481info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:06:49Zoai:repositorium.sdum.uminho.pt:1822/75419Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:57:37.845774Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The Russell-Prawitz embedding and the atomization of universal instantiation |
title |
The Russell-Prawitz embedding and the atomization of universal instantiation |
spellingShingle |
The Russell-Prawitz embedding and the atomization of universal instantiation Espírito Santo, José Intuitionistic propositional calculus System F Predicative polymorphism Russell-Prawitz translation Proof reduction Ciências Naturais::Matemáticas Science & Technology |
title_short |
The Russell-Prawitz embedding and the atomization of universal instantiation |
title_full |
The Russell-Prawitz embedding and the atomization of universal instantiation |
title_fullStr |
The Russell-Prawitz embedding and the atomization of universal instantiation |
title_full_unstemmed |
The Russell-Prawitz embedding and the atomization of universal instantiation |
title_sort |
The Russell-Prawitz embedding and the atomization of universal instantiation |
author |
Espírito Santo, José |
author_facet |
Espírito Santo, José Ferreira, Gilda |
author_role |
author |
author2 |
Ferreira, Gilda |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Espírito Santo, José Ferreira, Gilda |
dc.subject.por.fl_str_mv |
Intuitionistic propositional calculus System F Predicative polymorphism Russell-Prawitz translation Proof reduction Ciências Naturais::Matemáticas Science & Technology |
topic |
Intuitionistic propositional calculus System F Predicative polymorphism Russell-Prawitz translation Proof reduction Ciências Naturais::Matemáticas Science & Technology |
description |
Given the recent interest in the fragment of system F where universal instantiation is restricted to atomic formulas, a fragment nowadays named system Fat, we study directly in system F new conversions whose purpose is to enforce that restriction. We show some benefits of these new atomization conversions: (i) they help achieving strict simulation of proof reduction by means of the Russell–Prawitz embedding of IPC into system F, (ii) they are not stronger than a certain ‘dinaturality’ conversion known to generate a consistent equality of proofs, (iii) they provide the bridge between the Russell–Prawitz embedding and another translation, due to the authors, of IPC directly into system Fat and (iv) they give means for explaining why the Russell–Prawitz translation achieves strict simulation whereas the translation into Fat does not. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/75419 |
url |
http://hdl.handle.net/1822/75419 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1367-0751 1368-9894 10.1093/jigpal/jzaa025 https://academic.oup.com/jigpal/article-abstract/29/5/823/5877481 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132365463748608 |