Learning prognostic models using a mixture of biclustering and triclustering: predicting the need for non-invasive ventilation in amyotrophic lateral sclerosis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/54489 |
Resumo: | © 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
id |
RCAP_b4d05fd6616b405f31bd147c462e59a1 |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/54489 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Learning prognostic models using a mixture of biclustering and triclustering: predicting the need for non-invasive ventilation in amyotrophic lateral sclerosisAmyotrophic Lateral SclerosisBiclusteringDisease progression patternsPrognosticThree-way dataTriclustering© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)Longitudinal cohort studies to study disease progression generally combine temporal features produced under periodic assessments (clinical follow-up) with static features associated with single-time assessments, genetic, psychophysiological, and demographic profiles. Subspace clustering, including biclustering and triclustering stances, enables the discovery of local and discriminative patterns from such multidimensional cohort data. These patterns, highly interpretable, are relevant to identifying groups of patients with similar traits or progression patterns. Despite their potential, their use for improving predictive tasks in clinical domains remains unexplored. In this work, we propose to learn predictive models from static and temporal data using discriminative patterns, obtained via biclustering and triclustering, as features within a state-of-the-art classifier, thus enhancing model interpretation. triCluster is extended to find time-contiguous triclusters in temporal data (temporal patterns) and a biclustering algorithm to discover coherent patterns in static data. The transformed data space, composed of bicluster and tricluster features, capture local and cross-variable associations with discriminative power, yielding unique statistical properties of interest. As a case study, we applied our methodology to follow-up data from Portuguese patients with Amyotrophic Lateral Sclerosis (ALS) to predict the need for non-invasive ventilation (NIV) since the last appointment. The results showed that, in general, our methodology outperformed baseline results using the original features. Furthermore, the bicluster/tricluster-based patterns used by the classifier can be used by clinicians to understand the models by highlighting relevant prognostic patterns.This work was partially supported by Fundação para a Ciência e a Tecnologia (FCT), Portugal, the Portuguese public agency for science, technology and innovation, funding to projects AIpALS (PTDC/CCI-CIF/4613/2020), LASIGE (UIDB/ 00408/2020 and UIDP/00408/2020) and INESC-ID (UIDB/ 50021/2020) Research Units, and PhD research scholarship (2020.05100.BD) to DFS; and by the BRAINTEASER project which has received funding from the European Union’s Horizon 2020 research and innovation programme, under the grant agreement No 101017598.ElsevierRepositório da Universidade de LisboaSoares, Diogo F.Henriques, RuiGromicho, MartaCarvalho, MamedeMadeira, Sara C.2022-09-16T15:25:21Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/54489engJ Biomed Inform. 2022 Aug 30;134:1041721532-046410.1016/j.jbi.2022.1041721532-0480info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T17:00:53Zoai:repositorio.ul.pt:10451/54489Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:05:18.374264Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Learning prognostic models using a mixture of biclustering and triclustering: predicting the need for non-invasive ventilation in amyotrophic lateral sclerosis |
title |
Learning prognostic models using a mixture of biclustering and triclustering: predicting the need for non-invasive ventilation in amyotrophic lateral sclerosis |
spellingShingle |
Learning prognostic models using a mixture of biclustering and triclustering: predicting the need for non-invasive ventilation in amyotrophic lateral sclerosis Soares, Diogo F. Amyotrophic Lateral Sclerosis Biclustering Disease progression patterns Prognostic Three-way data Triclustering |
title_short |
Learning prognostic models using a mixture of biclustering and triclustering: predicting the need for non-invasive ventilation in amyotrophic lateral sclerosis |
title_full |
Learning prognostic models using a mixture of biclustering and triclustering: predicting the need for non-invasive ventilation in amyotrophic lateral sclerosis |
title_fullStr |
Learning prognostic models using a mixture of biclustering and triclustering: predicting the need for non-invasive ventilation in amyotrophic lateral sclerosis |
title_full_unstemmed |
Learning prognostic models using a mixture of biclustering and triclustering: predicting the need for non-invasive ventilation in amyotrophic lateral sclerosis |
title_sort |
Learning prognostic models using a mixture of biclustering and triclustering: predicting the need for non-invasive ventilation in amyotrophic lateral sclerosis |
author |
Soares, Diogo F. |
author_facet |
Soares, Diogo F. Henriques, Rui Gromicho, Marta Carvalho, Mamede Madeira, Sara C. |
author_role |
author |
author2 |
Henriques, Rui Gromicho, Marta Carvalho, Mamede Madeira, Sara C. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Soares, Diogo F. Henriques, Rui Gromicho, Marta Carvalho, Mamede Madeira, Sara C. |
dc.subject.por.fl_str_mv |
Amyotrophic Lateral Sclerosis Biclustering Disease progression patterns Prognostic Three-way data Triclustering |
topic |
Amyotrophic Lateral Sclerosis Biclustering Disease progression patterns Prognostic Three-way data Triclustering |
description |
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-16T15:25:21Z 2022 2022-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/54489 |
url |
http://hdl.handle.net/10451/54489 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
J Biomed Inform. 2022 Aug 30;134:104172 1532-0464 10.1016/j.jbi.2022.104172 1532-0480 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134604433555456 |