Synchronization of Caputo fractional neural networks with bounded time variable delays
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/32629 |
Resumo: | One of the main problems connected with neural networks is synchronization. We examine a model of a neural network with time-varying delay and also the case when the connection weights (the influential strength of the jth neuron to the ith neuron) are variable in time and unbounded. The rate of change of the dynamics of all neurons is described by the Caputo fractional derivative. We apply Lyapunov functions and the Razumikhin method to obtain some sufficient conditions to ensure synchronization in the model. These sufficient conditions are explicitly expressed in terms of the parameters of the system, and hence, they are easily verifiable. We illustrate our theory with a particular nonlinear neural network. |
id |
RCAP_b509d188773f8d469db0e1f73ab9b66d |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/32629 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Synchronization of Caputo fractional neural networks with bounded time variable delaysNonlinear neural networksDelaySynchronizationLyapunov functionsOne of the main problems connected with neural networks is synchronization. We examine a model of a neural network with time-varying delay and also the case when the connection weights (the influential strength of the jth neuron to the ith neuron) are variable in time and unbounded. The rate of change of the dynamics of all neurons is described by the Caputo fractional derivative. We apply Lyapunov functions and the Razumikhin method to obtain some sufficient conditions to ensure synchronization in the model. These sufficient conditions are explicitly expressed in terms of the parameters of the system, and hence, they are easily verifiable. We illustrate our theory with a particular nonlinear neural network.De Gruyter Open2021-11-23T10:32:01Z2021-01-01T00:00:00Z2021-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/32629eng2391-545510.1515/math-2021-0046Almeida, RicardoHristova, SnezhanaTersian, Stepaninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:02:41Zoai:ria.ua.pt:10773/32629Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:04:10.112689Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Synchronization of Caputo fractional neural networks with bounded time variable delays |
title |
Synchronization of Caputo fractional neural networks with bounded time variable delays |
spellingShingle |
Synchronization of Caputo fractional neural networks with bounded time variable delays Almeida, Ricardo Nonlinear neural networks Delay Synchronization Lyapunov functions |
title_short |
Synchronization of Caputo fractional neural networks with bounded time variable delays |
title_full |
Synchronization of Caputo fractional neural networks with bounded time variable delays |
title_fullStr |
Synchronization of Caputo fractional neural networks with bounded time variable delays |
title_full_unstemmed |
Synchronization of Caputo fractional neural networks with bounded time variable delays |
title_sort |
Synchronization of Caputo fractional neural networks with bounded time variable delays |
author |
Almeida, Ricardo |
author_facet |
Almeida, Ricardo Hristova, Snezhana Tersian, Stepan |
author_role |
author |
author2 |
Hristova, Snezhana Tersian, Stepan |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Almeida, Ricardo Hristova, Snezhana Tersian, Stepan |
dc.subject.por.fl_str_mv |
Nonlinear neural networks Delay Synchronization Lyapunov functions |
topic |
Nonlinear neural networks Delay Synchronization Lyapunov functions |
description |
One of the main problems connected with neural networks is synchronization. We examine a model of a neural network with time-varying delay and also the case when the connection weights (the influential strength of the jth neuron to the ith neuron) are variable in time and unbounded. The rate of change of the dynamics of all neurons is described by the Caputo fractional derivative. We apply Lyapunov functions and the Razumikhin method to obtain some sufficient conditions to ensure synchronization in the model. These sufficient conditions are explicitly expressed in terms of the parameters of the system, and hence, they are easily verifiable. We illustrate our theory with a particular nonlinear neural network. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-23T10:32:01Z 2021-01-01T00:00:00Z 2021-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/32629 |
url |
http://hdl.handle.net/10773/32629 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2391-5455 10.1515/math-2021-0046 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter Open |
publisher.none.fl_str_mv |
De Gruyter Open |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137697285013504 |