Daily regulation of key metabolic pathways in two seagrasses under natural light conditions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.1/17418 |
Resumo: | The circadian clock is an endogenous time-keeping mechanism that enables organisms to adapt to external environmental cycles. It produces rhythms of plant metabolism and physiology, and interacts with signaling pathways controlling daily and seasonal environmental responses through gene expression regulation. Downstream metabolic outputs, such as photosynthesis and sugar metabolism, besides being affected by the clock, can also contribute to the circadian timing itself. In marine plants, studies of circadian rhythms are still way behind in respect to terrestrial species, which strongly limits the understanding of how they coordinate their physiology and energetic metabolism with environmental signals at sea. Here, we provided a first description of daily timing of key core clock components and clock output pathways in two seagrass species, Cymodocea nodosa and Zostera marina (order Alismatales), cooccurring at the same geographic location, thus exposed to identical natural variations in photoperiod. Large differences were observed between species in the daily timing of accumulation of transcripts related to key metabolic pathways, such as photosynthesis and sucrose synthesis/transport, highlighting the importance of intrinsic biological, and likely ecological attributes of the species in determining the periodicity of functions. The two species exhibited a differential sensitivity to light-to-dark and dark-to-light transition times and could adopt different growth timing based on a differential strategy of resource allocation and mobilization throughout the day, possibly coordinated by the circadian clock. This behavior could potentially derive from divergent evolutionary adaptations of the species to their bio-geographical range of distributions. |
id |
RCAP_b57b55ebd9981d1162c98ccba2574a3f |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/17418 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Daily regulation of key metabolic pathways in two seagrasses under natural light conditionsRegulação diária das principais vias metabólicas em dois capim-marinhos sob condições de luz naturalGene expressionSugarsCircadian clockMarine plantsPrimary metabolismPhotoperiodThe circadian clock is an endogenous time-keeping mechanism that enables organisms to adapt to external environmental cycles. It produces rhythms of plant metabolism and physiology, and interacts with signaling pathways controlling daily and seasonal environmental responses through gene expression regulation. Downstream metabolic outputs, such as photosynthesis and sugar metabolism, besides being affected by the clock, can also contribute to the circadian timing itself. In marine plants, studies of circadian rhythms are still way behind in respect to terrestrial species, which strongly limits the understanding of how they coordinate their physiology and energetic metabolism with environmental signals at sea. Here, we provided a first description of daily timing of key core clock components and clock output pathways in two seagrass species, Cymodocea nodosa and Zostera marina (order Alismatales), cooccurring at the same geographic location, thus exposed to identical natural variations in photoperiod. Large differences were observed between species in the daily timing of accumulation of transcripts related to key metabolic pathways, such as photosynthesis and sucrose synthesis/transport, highlighting the importance of intrinsic biological, and likely ecological attributes of the species in determining the periodicity of functions. The two species exhibited a differential sensitivity to light-to-dark and dark-to-light transition times and could adopt different growth timing based on a differential strategy of resource allocation and mobilization throughout the day, possibly coordinated by the circadian clock. This behavior could potentially derive from divergent evolutionary adaptations of the species to their bio-geographical range of distributions.Frontiers Media SASapientiaRuocco, MiriamBarrote, IsabelHofman, Jan DirkPes, KatiaCosta, MonyaProcaccini, GabrieleSilva, JoãoDattolo, Emanuela2022-01-03T17:26:22Z2021-122021-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/17418eng2296-701X10.3389/fevo.2021.757187info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:29:35Zoai:sapientia.ualg.pt:10400.1/17418Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:07:24.072732Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Daily regulation of key metabolic pathways in two seagrasses under natural light conditions Regulação diária das principais vias metabólicas em dois capim-marinhos sob condições de luz natural |
title |
Daily regulation of key metabolic pathways in two seagrasses under natural light conditions |
spellingShingle |
Daily regulation of key metabolic pathways in two seagrasses under natural light conditions Ruocco, Miriam Gene expression Sugars Circadian clock Marine plants Primary metabolism Photoperiod |
title_short |
Daily regulation of key metabolic pathways in two seagrasses under natural light conditions |
title_full |
Daily regulation of key metabolic pathways in two seagrasses under natural light conditions |
title_fullStr |
Daily regulation of key metabolic pathways in two seagrasses under natural light conditions |
title_full_unstemmed |
Daily regulation of key metabolic pathways in two seagrasses under natural light conditions |
title_sort |
Daily regulation of key metabolic pathways in two seagrasses under natural light conditions |
author |
Ruocco, Miriam |
author_facet |
Ruocco, Miriam Barrote, Isabel Hofman, Jan Dirk Pes, Katia Costa, Monya Procaccini, Gabriele Silva, João Dattolo, Emanuela |
author_role |
author |
author2 |
Barrote, Isabel Hofman, Jan Dirk Pes, Katia Costa, Monya Procaccini, Gabriele Silva, João Dattolo, Emanuela |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Sapientia |
dc.contributor.author.fl_str_mv |
Ruocco, Miriam Barrote, Isabel Hofman, Jan Dirk Pes, Katia Costa, Monya Procaccini, Gabriele Silva, João Dattolo, Emanuela |
dc.subject.por.fl_str_mv |
Gene expression Sugars Circadian clock Marine plants Primary metabolism Photoperiod |
topic |
Gene expression Sugars Circadian clock Marine plants Primary metabolism Photoperiod |
description |
The circadian clock is an endogenous time-keeping mechanism that enables organisms to adapt to external environmental cycles. It produces rhythms of plant metabolism and physiology, and interacts with signaling pathways controlling daily and seasonal environmental responses through gene expression regulation. Downstream metabolic outputs, such as photosynthesis and sugar metabolism, besides being affected by the clock, can also contribute to the circadian timing itself. In marine plants, studies of circadian rhythms are still way behind in respect to terrestrial species, which strongly limits the understanding of how they coordinate their physiology and energetic metabolism with environmental signals at sea. Here, we provided a first description of daily timing of key core clock components and clock output pathways in two seagrass species, Cymodocea nodosa and Zostera marina (order Alismatales), cooccurring at the same geographic location, thus exposed to identical natural variations in photoperiod. Large differences were observed between species in the daily timing of accumulation of transcripts related to key metabolic pathways, such as photosynthesis and sucrose synthesis/transport, highlighting the importance of intrinsic biological, and likely ecological attributes of the species in determining the periodicity of functions. The two species exhibited a differential sensitivity to light-to-dark and dark-to-light transition times and could adopt different growth timing based on a differential strategy of resource allocation and mobilization throughout the day, possibly coordinated by the circadian clock. This behavior could potentially derive from divergent evolutionary adaptations of the species to their bio-geographical range of distributions. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12 2021-12-01T00:00:00Z 2022-01-03T17:26:22Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/17418 |
url |
http://hdl.handle.net/10400.1/17418 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2296-701X 10.3389/fevo.2021.757187 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media SA |
publisher.none.fl_str_mv |
Frontiers Media SA |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133318600458240 |