Study of polycrystalline Cu2ZnSnS4 films by Raman scattering
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/3428 |
Resumo: | Cu2ZnSnS4 (CZTS) is a p-type semiconductor that has been seen as a possible low-cost replacement for Cu(In,Ga)Se2 in thin film solar cells. So far compound has presented difficulties in its growth, mainly, because of the formation of secondary phases like ZnS, CuxSnSx+1, SnxSy, Cu2−xS and MoS2. X-ray diffraction analysis (XRD), which is mostly used for phase identification cannot resolve some of these phases from the kesterite/stannite CZTS and thus the use of a complementary technique is needed. Raman scattering analysis can help distinguishing these phases not only laterally but also in depth. Knowing the absorption coefficient and using different excitation wavelengths in Raman scattering analysis, one is capable of profiling the different phases present in multi-phase CZTS thin films. This work describes in a concise form the methods used to grow chalcogenide compounds, such as, CZTS, CuxSnSx+1, SnxSy and cubic ZnS based on the sulphurization of stacked metallic precursors. The results of the films’ characterization by XRD, electron backscatter diffraction and scanning electron microscopy/energy dispersive spectroscopy techniques are presented for the CZTS phase. The limitation of XRD to identify some of the possible phases that can remain after the sulphurization process are investigated. The results of the Raman analysis of the phases formed in this growth method and the advantage of using this technique in identifying them are presented. Using different excitation wavelengths it is also analysed the CZTS film in depth showing that this technique can be used as non destructive methods to detect secondary phases. |
id |
RCAP_b61b37a8a57aa993265fdbcf4582f0de |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/3428 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Study of polycrystalline Cu2ZnSnS4 films by Raman scatteringCu2ZnSnS4Thin filmRamanXRDEBSDCu2ZnSnS4 (CZTS) is a p-type semiconductor that has been seen as a possible low-cost replacement for Cu(In,Ga)Se2 in thin film solar cells. So far compound has presented difficulties in its growth, mainly, because of the formation of secondary phases like ZnS, CuxSnSx+1, SnxSy, Cu2−xS and MoS2. X-ray diffraction analysis (XRD), which is mostly used for phase identification cannot resolve some of these phases from the kesterite/stannite CZTS and thus the use of a complementary technique is needed. Raman scattering analysis can help distinguishing these phases not only laterally but also in depth. Knowing the absorption coefficient and using different excitation wavelengths in Raman scattering analysis, one is capable of profiling the different phases present in multi-phase CZTS thin films. This work describes in a concise form the methods used to grow chalcogenide compounds, such as, CZTS, CuxSnSx+1, SnxSy and cubic ZnS based on the sulphurization of stacked metallic precursors. The results of the films’ characterization by XRD, electron backscatter diffraction and scanning electron microscopy/energy dispersive spectroscopy techniques are presented for the CZTS phase. The limitation of XRD to identify some of the possible phases that can remain after the sulphurization process are investigated. The results of the Raman analysis of the phases formed in this growth method and the advantage of using this technique in identifying them are presented. Using different excitation wavelengths it is also analysed the CZTS film in depth showing that this technique can be used as non destructive methods to detect secondary phases.ElsevierRepositório Científico do Instituto Politécnico do PortoFernandes, P. A.Salomé, P. M. P.Cunha, A. F. da2014-01-22T11:30:30Z20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/3428eng0925-838810.1016/j.jallcom.2011.04.097info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:43:12Zoai:recipp.ipp.pt:10400.22/3428Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:24:24.100303Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Study of polycrystalline Cu2ZnSnS4 films by Raman scattering |
title |
Study of polycrystalline Cu2ZnSnS4 films by Raman scattering |
spellingShingle |
Study of polycrystalline Cu2ZnSnS4 films by Raman scattering Fernandes, P. A. Cu2ZnSnS4 Thin film Raman XRD EBSD |
title_short |
Study of polycrystalline Cu2ZnSnS4 films by Raman scattering |
title_full |
Study of polycrystalline Cu2ZnSnS4 films by Raman scattering |
title_fullStr |
Study of polycrystalline Cu2ZnSnS4 films by Raman scattering |
title_full_unstemmed |
Study of polycrystalline Cu2ZnSnS4 films by Raman scattering |
title_sort |
Study of polycrystalline Cu2ZnSnS4 films by Raman scattering |
author |
Fernandes, P. A. |
author_facet |
Fernandes, P. A. Salomé, P. M. P. Cunha, A. F. da |
author_role |
author |
author2 |
Salomé, P. M. P. Cunha, A. F. da |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Fernandes, P. A. Salomé, P. M. P. Cunha, A. F. da |
dc.subject.por.fl_str_mv |
Cu2ZnSnS4 Thin film Raman XRD EBSD |
topic |
Cu2ZnSnS4 Thin film Raman XRD EBSD |
description |
Cu2ZnSnS4 (CZTS) is a p-type semiconductor that has been seen as a possible low-cost replacement for Cu(In,Ga)Se2 in thin film solar cells. So far compound has presented difficulties in its growth, mainly, because of the formation of secondary phases like ZnS, CuxSnSx+1, SnxSy, Cu2−xS and MoS2. X-ray diffraction analysis (XRD), which is mostly used for phase identification cannot resolve some of these phases from the kesterite/stannite CZTS and thus the use of a complementary technique is needed. Raman scattering analysis can help distinguishing these phases not only laterally but also in depth. Knowing the absorption coefficient and using different excitation wavelengths in Raman scattering analysis, one is capable of profiling the different phases present in multi-phase CZTS thin films. This work describes in a concise form the methods used to grow chalcogenide compounds, such as, CZTS, CuxSnSx+1, SnxSy and cubic ZnS based on the sulphurization of stacked metallic precursors. The results of the films’ characterization by XRD, electron backscatter diffraction and scanning electron microscopy/energy dispersive spectroscopy techniques are presented for the CZTS phase. The limitation of XRD to identify some of the possible phases that can remain after the sulphurization process are investigated. The results of the Raman analysis of the phases formed in this growth method and the advantage of using this technique in identifying them are presented. Using different excitation wavelengths it is also analysed the CZTS film in depth showing that this technique can be used as non destructive methods to detect secondary phases. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 2011-01-01T00:00:00Z 2014-01-22T11:30:30Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/3428 |
url |
http://hdl.handle.net/10400.22/3428 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0925-8388 10.1016/j.jallcom.2011.04.097 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131338087858176 |