Dynamic and intelligent optimization of the data matrix part reading process

Detalhes bibliográficos
Autor(a) principal: Soares, Paulo Miguel Meneses
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/41002
Resumo: Ensuring accurate traceability in manufacturing processes is crucial for quality control and product safety. The use of datamatrix codes has become common for encoding essential information. However, challenges arise when decoding these codes due to factors such as poor marking, image noise, and varying lighting conditions. This thesis addresses the problem of reliable datamatrix reading using computer vision and machine learning techniques. The aim of this thesis is to achieve a misreading percentage below 2% by implementing an intelligent system that can accurately decode datamatrix codes. Through extensive research and experimentation, a dynamic solution was developed that leverages image analysis, processing, and optimization algorithms. By applying techniques such as rotation, cropping, and binarization, the system enhances the readability of datamatrix codes and removes extraneous noise. The proposed solution was designed and implemented specifically for quality control in the manufacturing processes of differential boxes at Renault Cacia. The system’s performance was validated through rigorous testing, and the desired goal was surpassed with a reading decoding accuracy of 100%. The system’s implementation was facilitated by the use of computer vision and machine learning principles. The successful integration of intelligent algorithms highlights the potential for further advancements in quality monitoring and real-time analysis within the manufacturing industry.
id RCAP_b6a6d7194bda49cbb2ffd854ed6eb994
oai_identifier_str oai:ria.ua.pt:10773/41002
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Dynamic and intelligent optimization of the data matrix part reading processTraceabilityDatamatrixComputer visionMachine learningObject detectionEnsuring accurate traceability in manufacturing processes is crucial for quality control and product safety. The use of datamatrix codes has become common for encoding essential information. However, challenges arise when decoding these codes due to factors such as poor marking, image noise, and varying lighting conditions. This thesis addresses the problem of reliable datamatrix reading using computer vision and machine learning techniques. The aim of this thesis is to achieve a misreading percentage below 2% by implementing an intelligent system that can accurately decode datamatrix codes. Through extensive research and experimentation, a dynamic solution was developed that leverages image analysis, processing, and optimization algorithms. By applying techniques such as rotation, cropping, and binarization, the system enhances the readability of datamatrix codes and removes extraneous noise. The proposed solution was designed and implemented specifically for quality control in the manufacturing processes of differential boxes at Renault Cacia. The system’s performance was validated through rigorous testing, and the desired goal was surpassed with a reading decoding accuracy of 100%. The system’s implementation was facilitated by the use of computer vision and machine learning principles. The successful integration of intelligent algorithms highlights the potential for further advancements in quality monitoring and real-time analysis within the manufacturing industry.Garantir a rastreabilidade exacta nos processos de fabrico é crucial para o controlo da qualidade e a segurança dos produtos. A utilização de códigos datamatrix tornou-se comum para codificar informações essenciais. No entanto, surgem desafios na descodificação destes códigos devido a factores como a má marcação, o ruído da imagem e a variação das condições de iluminação. Esta tese aborda o problema da leitura fiável de datamatrix utilizando técnicas de visão computacional e de aprendizagem automática. O objetivo desta tese é conseguir uma percentagem de erros de leitura inferior a 2% através da implementação de um sistema inteligente que possa descodificar com precisão os códigos datamatrix. Através de extensa pesquisa e experimentação, uma solução dinâmica foi desenvolvida que aproveita a análise de imagem, processamento e algoritmos de otimização. Ao aplicar técnicas como a rotação, o corte e a binarização, o sistema melhora a legibilidade dos códigos datamatrix e remove o ruído estranho. A solução proposta foi concebida e implementada especificamente para o controlo de qualidade nos processos de fabrico de caixas diferenciais da Renault Cacia. O desempenho do sistema foi validado através de testes rigorosos, e o objetivo desejado foi ultrapassado com uma precisão da descodificação de 100%. A implementação do sistema foi facilitada pelo uso de visão computacional e princípios de aprendizagem de máquina. A integração bem sucedida de algoritmos inteligentes destaca o potencial para novos avanços na monitorização da qualidade e análise em tempo real na indústria transformadora.2024-03-08T14:21:44Z2023-11-27T00:00:00Z2023-11-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/41002engSoares, Paulo Miguel Menesesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T01:47:17Zoai:ria.ua.pt:10773/41002Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:20:05.036498Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Dynamic and intelligent optimization of the data matrix part reading process
title Dynamic and intelligent optimization of the data matrix part reading process
spellingShingle Dynamic and intelligent optimization of the data matrix part reading process
Soares, Paulo Miguel Meneses
Traceability
Datamatrix
Computer vision
Machine learning
Object detection
title_short Dynamic and intelligent optimization of the data matrix part reading process
title_full Dynamic and intelligent optimization of the data matrix part reading process
title_fullStr Dynamic and intelligent optimization of the data matrix part reading process
title_full_unstemmed Dynamic and intelligent optimization of the data matrix part reading process
title_sort Dynamic and intelligent optimization of the data matrix part reading process
author Soares, Paulo Miguel Meneses
author_facet Soares, Paulo Miguel Meneses
author_role author
dc.contributor.author.fl_str_mv Soares, Paulo Miguel Meneses
dc.subject.por.fl_str_mv Traceability
Datamatrix
Computer vision
Machine learning
Object detection
topic Traceability
Datamatrix
Computer vision
Machine learning
Object detection
description Ensuring accurate traceability in manufacturing processes is crucial for quality control and product safety. The use of datamatrix codes has become common for encoding essential information. However, challenges arise when decoding these codes due to factors such as poor marking, image noise, and varying lighting conditions. This thesis addresses the problem of reliable datamatrix reading using computer vision and machine learning techniques. The aim of this thesis is to achieve a misreading percentage below 2% by implementing an intelligent system that can accurately decode datamatrix codes. Through extensive research and experimentation, a dynamic solution was developed that leverages image analysis, processing, and optimization algorithms. By applying techniques such as rotation, cropping, and binarization, the system enhances the readability of datamatrix codes and removes extraneous noise. The proposed solution was designed and implemented specifically for quality control in the manufacturing processes of differential boxes at Renault Cacia. The system’s performance was validated through rigorous testing, and the desired goal was surpassed with a reading decoding accuracy of 100%. The system’s implementation was facilitated by the use of computer vision and machine learning principles. The successful integration of intelligent algorithms highlights the potential for further advancements in quality monitoring and real-time analysis within the manufacturing industry.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-27T00:00:00Z
2023-11-27
2024-03-08T14:21:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/41002
url http://hdl.handle.net/10773/41002
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137843101040640