Dynamic and intelligent optimization of the data matrix part reading process
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/41002 |
Resumo: | Ensuring accurate traceability in manufacturing processes is crucial for quality control and product safety. The use of datamatrix codes has become common for encoding essential information. However, challenges arise when decoding these codes due to factors such as poor marking, image noise, and varying lighting conditions. This thesis addresses the problem of reliable datamatrix reading using computer vision and machine learning techniques. The aim of this thesis is to achieve a misreading percentage below 2% by implementing an intelligent system that can accurately decode datamatrix codes. Through extensive research and experimentation, a dynamic solution was developed that leverages image analysis, processing, and optimization algorithms. By applying techniques such as rotation, cropping, and binarization, the system enhances the readability of datamatrix codes and removes extraneous noise. The proposed solution was designed and implemented specifically for quality control in the manufacturing processes of differential boxes at Renault Cacia. The system’s performance was validated through rigorous testing, and the desired goal was surpassed with a reading decoding accuracy of 100%. The system’s implementation was facilitated by the use of computer vision and machine learning principles. The successful integration of intelligent algorithms highlights the potential for further advancements in quality monitoring and real-time analysis within the manufacturing industry. |
id |
RCAP_b6a6d7194bda49cbb2ffd854ed6eb994 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/41002 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Dynamic and intelligent optimization of the data matrix part reading processTraceabilityDatamatrixComputer visionMachine learningObject detectionEnsuring accurate traceability in manufacturing processes is crucial for quality control and product safety. The use of datamatrix codes has become common for encoding essential information. However, challenges arise when decoding these codes due to factors such as poor marking, image noise, and varying lighting conditions. This thesis addresses the problem of reliable datamatrix reading using computer vision and machine learning techniques. The aim of this thesis is to achieve a misreading percentage below 2% by implementing an intelligent system that can accurately decode datamatrix codes. Through extensive research and experimentation, a dynamic solution was developed that leverages image analysis, processing, and optimization algorithms. By applying techniques such as rotation, cropping, and binarization, the system enhances the readability of datamatrix codes and removes extraneous noise. The proposed solution was designed and implemented specifically for quality control in the manufacturing processes of differential boxes at Renault Cacia. The system’s performance was validated through rigorous testing, and the desired goal was surpassed with a reading decoding accuracy of 100%. The system’s implementation was facilitated by the use of computer vision and machine learning principles. The successful integration of intelligent algorithms highlights the potential for further advancements in quality monitoring and real-time analysis within the manufacturing industry.Garantir a rastreabilidade exacta nos processos de fabrico é crucial para o controlo da qualidade e a segurança dos produtos. A utilização de códigos datamatrix tornou-se comum para codificar informações essenciais. No entanto, surgem desafios na descodificação destes códigos devido a factores como a má marcação, o ruído da imagem e a variação das condições de iluminação. Esta tese aborda o problema da leitura fiável de datamatrix utilizando técnicas de visão computacional e de aprendizagem automática. O objetivo desta tese é conseguir uma percentagem de erros de leitura inferior a 2% através da implementação de um sistema inteligente que possa descodificar com precisão os códigos datamatrix. Através de extensa pesquisa e experimentação, uma solução dinâmica foi desenvolvida que aproveita a análise de imagem, processamento e algoritmos de otimização. Ao aplicar técnicas como a rotação, o corte e a binarização, o sistema melhora a legibilidade dos códigos datamatrix e remove o ruído estranho. A solução proposta foi concebida e implementada especificamente para o controlo de qualidade nos processos de fabrico de caixas diferenciais da Renault Cacia. O desempenho do sistema foi validado através de testes rigorosos, e o objetivo desejado foi ultrapassado com uma precisão da descodificação de 100%. A implementação do sistema foi facilitada pelo uso de visão computacional e princípios de aprendizagem de máquina. A integração bem sucedida de algoritmos inteligentes destaca o potencial para novos avanços na monitorização da qualidade e análise em tempo real na indústria transformadora.2024-03-08T14:21:44Z2023-11-27T00:00:00Z2023-11-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/41002engSoares, Paulo Miguel Menesesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T01:47:17Zoai:ria.ua.pt:10773/41002Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:20:05.036498Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Dynamic and intelligent optimization of the data matrix part reading process |
title |
Dynamic and intelligent optimization of the data matrix part reading process |
spellingShingle |
Dynamic and intelligent optimization of the data matrix part reading process Soares, Paulo Miguel Meneses Traceability Datamatrix Computer vision Machine learning Object detection |
title_short |
Dynamic and intelligent optimization of the data matrix part reading process |
title_full |
Dynamic and intelligent optimization of the data matrix part reading process |
title_fullStr |
Dynamic and intelligent optimization of the data matrix part reading process |
title_full_unstemmed |
Dynamic and intelligent optimization of the data matrix part reading process |
title_sort |
Dynamic and intelligent optimization of the data matrix part reading process |
author |
Soares, Paulo Miguel Meneses |
author_facet |
Soares, Paulo Miguel Meneses |
author_role |
author |
dc.contributor.author.fl_str_mv |
Soares, Paulo Miguel Meneses |
dc.subject.por.fl_str_mv |
Traceability Datamatrix Computer vision Machine learning Object detection |
topic |
Traceability Datamatrix Computer vision Machine learning Object detection |
description |
Ensuring accurate traceability in manufacturing processes is crucial for quality control and product safety. The use of datamatrix codes has become common for encoding essential information. However, challenges arise when decoding these codes due to factors such as poor marking, image noise, and varying lighting conditions. This thesis addresses the problem of reliable datamatrix reading using computer vision and machine learning techniques. The aim of this thesis is to achieve a misreading percentage below 2% by implementing an intelligent system that can accurately decode datamatrix codes. Through extensive research and experimentation, a dynamic solution was developed that leverages image analysis, processing, and optimization algorithms. By applying techniques such as rotation, cropping, and binarization, the system enhances the readability of datamatrix codes and removes extraneous noise. The proposed solution was designed and implemented specifically for quality control in the manufacturing processes of differential boxes at Renault Cacia. The system’s performance was validated through rigorous testing, and the desired goal was surpassed with a reading decoding accuracy of 100%. The system’s implementation was facilitated by the use of computer vision and machine learning principles. The successful integration of intelligent algorithms highlights the potential for further advancements in quality monitoring and real-time analysis within the manufacturing industry. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-27T00:00:00Z 2023-11-27 2024-03-08T14:21:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/41002 |
url |
http://hdl.handle.net/10773/41002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137843101040640 |