People tracking using drones for smart spaces

Detalhes bibliográficos
Autor(a) principal: Santos, Luís Marques
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/29725
Resumo: Recent technological progress made over the last decades in the field of Computer Vision has introduced new methods and algorithms with ever increasing performance results. Particularly, the emergence of machine learning algorithms enabled class based object detection on live video feeds. Alongside these advances, Unmanned Aerial Vehicles (more commonly known as drones), have also experienced advancements in both hardware miniaturization and software optimization. Thanks to these improvements, drones have emerged from their military usage based background and are now both used by the general public and the scientific community for applications as distinct as aerial photography and environmental monitoring. This dissertation aims to take advantage of these recent technological advancements and apply state of the art machine learning algorithms in order to create a Unmanned Aerial Vehicle (UAV) based network architecture capable of performing real time people tracking through image detection. To perform object detection, two distinct machine learning algorithms are presented. The first one uses an SVM based approach, while the second one uses an Convolutional Neural Network (CNN) based architecture. Both methods will be evaluated using an image dataset created for the purposes of this dissertation’s work. The evaluations performed regarding the object detectors performance showed that the method using a CNN based architecture was the best both in terms of processing time required and detection accuracy, and therefore, the most suitable method for our implementation. The developed network architecture was tested in a live scenario context, with the results showing that the system is capable of performing people tracking at average walking speeds.
id RCAP_bc068de98c47caefa9e496c3ba7f765a
oai_identifier_str oai:ria.ua.pt:10773/29725
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling People tracking using drones for smart spacesDronesMachine LearningConvolutional Neural NetworksObject DetectionComputer VisionRecent technological progress made over the last decades in the field of Computer Vision has introduced new methods and algorithms with ever increasing performance results. Particularly, the emergence of machine learning algorithms enabled class based object detection on live video feeds. Alongside these advances, Unmanned Aerial Vehicles (more commonly known as drones), have also experienced advancements in both hardware miniaturization and software optimization. Thanks to these improvements, drones have emerged from their military usage based background and are now both used by the general public and the scientific community for applications as distinct as aerial photography and environmental monitoring. This dissertation aims to take advantage of these recent technological advancements and apply state of the art machine learning algorithms in order to create a Unmanned Aerial Vehicle (UAV) based network architecture capable of performing real time people tracking through image detection. To perform object detection, two distinct machine learning algorithms are presented. The first one uses an SVM based approach, while the second one uses an Convolutional Neural Network (CNN) based architecture. Both methods will be evaluated using an image dataset created for the purposes of this dissertation’s work. The evaluations performed regarding the object detectors performance showed that the method using a CNN based architecture was the best both in terms of processing time required and detection accuracy, and therefore, the most suitable method for our implementation. The developed network architecture was tested in a live scenario context, with the results showing that the system is capable of performing people tracking at average walking speeds.O recente progresso tecnológico registado nas últimas décadas no campo da Visão por Computador introduziu novos métodos e algoritmos com um desempenho cada vez mais elevado. Particularmente, a criação de algoritmos de aprendizagem automática tornou possível a detecção de objetos aplicada a feeds de vídeo capturadas em tempo real. Paralelo com este progresso, a tecnologia relativa a veículos aéreos não tripulados, ou drones, também beneficiaram de avanços tanto na miniaturização dos seus componentes de hardware assim como na optimização do software. Graças a essas melhorias, os drones emergiram do seu passado militar e são agora usados tanto pelo público em geral como pela comunidade científica para aplicações tão distintas como fotografia e monitorização ambiental. O objectivo da presente dissertação pretende tirar proveito destes recentes avanços tecnológicos e aplicar algoritmos de aprendizagem automática de última geração para criar um sistema capaz de realizar seguimento automático de pessoas com drones através de visão por computador. Para realizar a detecção de objetos, dois algoritmos distintos de aprendizagem automática são apresentados. O primeiro é dotado de uma abordagem baseada em Support Vector Machine (SVM), enquanto o segundo é caracterizado por uma arquitetura baseada em Redes Neuronais Convolucionais. Ambos os métodos serão avaliados usando uma base de dados de imagens criada para os propósitos da presente dissertação. As avaliações realizadas relativas ao desempenho dos algoritmos de detecção de objectos demonstraram que o método baseado numa arquitetura de Redes Neuronais Covolucionais foi o melhor tanto em termos de tempo de processamento médio assim como na precisão das detecções, revelando-se portanto, como sendo o método mais adequado de acordo com os objectivos pretendidos. O sistema desenvolvido foi testado num contexto real, com os resultados obtidos a demonstrarem que o sistema é capaz de realizar o seguimento de pessoas a velocidades comparáveis a um ritmo normal humano de caminhada.2020-11-05T14:03:10Z2019-07-01T00:00:00Z2019-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/29725engSantos, Luís Marquesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:57:31Zoai:ria.ua.pt:10773/29725Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:59.078834Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv People tracking using drones for smart spaces
title People tracking using drones for smart spaces
spellingShingle People tracking using drones for smart spaces
Santos, Luís Marques
Drones
Machine Learning
Convolutional Neural Networks
Object Detection
Computer Vision
title_short People tracking using drones for smart spaces
title_full People tracking using drones for smart spaces
title_fullStr People tracking using drones for smart spaces
title_full_unstemmed People tracking using drones for smart spaces
title_sort People tracking using drones for smart spaces
author Santos, Luís Marques
author_facet Santos, Luís Marques
author_role author
dc.contributor.author.fl_str_mv Santos, Luís Marques
dc.subject.por.fl_str_mv Drones
Machine Learning
Convolutional Neural Networks
Object Detection
Computer Vision
topic Drones
Machine Learning
Convolutional Neural Networks
Object Detection
Computer Vision
description Recent technological progress made over the last decades in the field of Computer Vision has introduced new methods and algorithms with ever increasing performance results. Particularly, the emergence of machine learning algorithms enabled class based object detection on live video feeds. Alongside these advances, Unmanned Aerial Vehicles (more commonly known as drones), have also experienced advancements in both hardware miniaturization and software optimization. Thanks to these improvements, drones have emerged from their military usage based background and are now both used by the general public and the scientific community for applications as distinct as aerial photography and environmental monitoring. This dissertation aims to take advantage of these recent technological advancements and apply state of the art machine learning algorithms in order to create a Unmanned Aerial Vehicle (UAV) based network architecture capable of performing real time people tracking through image detection. To perform object detection, two distinct machine learning algorithms are presented. The first one uses an SVM based approach, while the second one uses an Convolutional Neural Network (CNN) based architecture. Both methods will be evaluated using an image dataset created for the purposes of this dissertation’s work. The evaluations performed regarding the object detectors performance showed that the method using a CNN based architecture was the best both in terms of processing time required and detection accuracy, and therefore, the most suitable method for our implementation. The developed network architecture was tested in a live scenario context, with the results showing that the system is capable of performing people tracking at average walking speeds.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-01T00:00:00Z
2019-07
2020-11-05T14:03:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/29725
url http://hdl.handle.net/10773/29725
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137675420106752