People tracking using drones for smart spaces
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/29725 |
Resumo: | Recent technological progress made over the last decades in the field of Computer Vision has introduced new methods and algorithms with ever increasing performance results. Particularly, the emergence of machine learning algorithms enabled class based object detection on live video feeds. Alongside these advances, Unmanned Aerial Vehicles (more commonly known as drones), have also experienced advancements in both hardware miniaturization and software optimization. Thanks to these improvements, drones have emerged from their military usage based background and are now both used by the general public and the scientific community for applications as distinct as aerial photography and environmental monitoring. This dissertation aims to take advantage of these recent technological advancements and apply state of the art machine learning algorithms in order to create a Unmanned Aerial Vehicle (UAV) based network architecture capable of performing real time people tracking through image detection. To perform object detection, two distinct machine learning algorithms are presented. The first one uses an SVM based approach, while the second one uses an Convolutional Neural Network (CNN) based architecture. Both methods will be evaluated using an image dataset created for the purposes of this dissertation’s work. The evaluations performed regarding the object detectors performance showed that the method using a CNN based architecture was the best both in terms of processing time required and detection accuracy, and therefore, the most suitable method for our implementation. The developed network architecture was tested in a live scenario context, with the results showing that the system is capable of performing people tracking at average walking speeds. |
id |
RCAP_bc068de98c47caefa9e496c3ba7f765a |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/29725 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
People tracking using drones for smart spacesDronesMachine LearningConvolutional Neural NetworksObject DetectionComputer VisionRecent technological progress made over the last decades in the field of Computer Vision has introduced new methods and algorithms with ever increasing performance results. Particularly, the emergence of machine learning algorithms enabled class based object detection on live video feeds. Alongside these advances, Unmanned Aerial Vehicles (more commonly known as drones), have also experienced advancements in both hardware miniaturization and software optimization. Thanks to these improvements, drones have emerged from their military usage based background and are now both used by the general public and the scientific community for applications as distinct as aerial photography and environmental monitoring. This dissertation aims to take advantage of these recent technological advancements and apply state of the art machine learning algorithms in order to create a Unmanned Aerial Vehicle (UAV) based network architecture capable of performing real time people tracking through image detection. To perform object detection, two distinct machine learning algorithms are presented. The first one uses an SVM based approach, while the second one uses an Convolutional Neural Network (CNN) based architecture. Both methods will be evaluated using an image dataset created for the purposes of this dissertation’s work. The evaluations performed regarding the object detectors performance showed that the method using a CNN based architecture was the best both in terms of processing time required and detection accuracy, and therefore, the most suitable method for our implementation. The developed network architecture was tested in a live scenario context, with the results showing that the system is capable of performing people tracking at average walking speeds.O recente progresso tecnológico registado nas últimas décadas no campo da Visão por Computador introduziu novos métodos e algoritmos com um desempenho cada vez mais elevado. Particularmente, a criação de algoritmos de aprendizagem automática tornou possível a detecção de objetos aplicada a feeds de vídeo capturadas em tempo real. Paralelo com este progresso, a tecnologia relativa a veículos aéreos não tripulados, ou drones, também beneficiaram de avanços tanto na miniaturização dos seus componentes de hardware assim como na optimização do software. Graças a essas melhorias, os drones emergiram do seu passado militar e são agora usados tanto pelo público em geral como pela comunidade científica para aplicações tão distintas como fotografia e monitorização ambiental. O objectivo da presente dissertação pretende tirar proveito destes recentes avanços tecnológicos e aplicar algoritmos de aprendizagem automática de última geração para criar um sistema capaz de realizar seguimento automático de pessoas com drones através de visão por computador. Para realizar a detecção de objetos, dois algoritmos distintos de aprendizagem automática são apresentados. O primeiro é dotado de uma abordagem baseada em Support Vector Machine (SVM), enquanto o segundo é caracterizado por uma arquitetura baseada em Redes Neuronais Convolucionais. Ambos os métodos serão avaliados usando uma base de dados de imagens criada para os propósitos da presente dissertação. As avaliações realizadas relativas ao desempenho dos algoritmos de detecção de objectos demonstraram que o método baseado numa arquitetura de Redes Neuronais Covolucionais foi o melhor tanto em termos de tempo de processamento médio assim como na precisão das detecções, revelando-se portanto, como sendo o método mais adequado de acordo com os objectivos pretendidos. O sistema desenvolvido foi testado num contexto real, com os resultados obtidos a demonstrarem que o sistema é capaz de realizar o seguimento de pessoas a velocidades comparáveis a um ritmo normal humano de caminhada.2020-11-05T14:03:10Z2019-07-01T00:00:00Z2019-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/29725engSantos, Luís Marquesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:57:31Zoai:ria.ua.pt:10773/29725Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:59.078834Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
People tracking using drones for smart spaces |
title |
People tracking using drones for smart spaces |
spellingShingle |
People tracking using drones for smart spaces Santos, Luís Marques Drones Machine Learning Convolutional Neural Networks Object Detection Computer Vision |
title_short |
People tracking using drones for smart spaces |
title_full |
People tracking using drones for smart spaces |
title_fullStr |
People tracking using drones for smart spaces |
title_full_unstemmed |
People tracking using drones for smart spaces |
title_sort |
People tracking using drones for smart spaces |
author |
Santos, Luís Marques |
author_facet |
Santos, Luís Marques |
author_role |
author |
dc.contributor.author.fl_str_mv |
Santos, Luís Marques |
dc.subject.por.fl_str_mv |
Drones Machine Learning Convolutional Neural Networks Object Detection Computer Vision |
topic |
Drones Machine Learning Convolutional Neural Networks Object Detection Computer Vision |
description |
Recent technological progress made over the last decades in the field of Computer Vision has introduced new methods and algorithms with ever increasing performance results. Particularly, the emergence of machine learning algorithms enabled class based object detection on live video feeds. Alongside these advances, Unmanned Aerial Vehicles (more commonly known as drones), have also experienced advancements in both hardware miniaturization and software optimization. Thanks to these improvements, drones have emerged from their military usage based background and are now both used by the general public and the scientific community for applications as distinct as aerial photography and environmental monitoring. This dissertation aims to take advantage of these recent technological advancements and apply state of the art machine learning algorithms in order to create a Unmanned Aerial Vehicle (UAV) based network architecture capable of performing real time people tracking through image detection. To perform object detection, two distinct machine learning algorithms are presented. The first one uses an SVM based approach, while the second one uses an Convolutional Neural Network (CNN) based architecture. Both methods will be evaluated using an image dataset created for the purposes of this dissertation’s work. The evaluations performed regarding the object detectors performance showed that the method using a CNN based architecture was the best both in terms of processing time required and detection accuracy, and therefore, the most suitable method for our implementation. The developed network architecture was tested in a live scenario context, with the results showing that the system is capable of performing people tracking at average walking speeds. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07-01T00:00:00Z 2019-07 2020-11-05T14:03:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/29725 |
url |
http://hdl.handle.net/10773/29725 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137675420106752 |