Volatility modeling in cryptocurrency markets: effects over returns
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/33751 |
Resumo: | The proposed work aims to study the influence of Bitcoin's volatility on the return of a set of currencies, defined by Ethereum (ETH), Cardano (ADA), Binance coin (BNB), and Ripple (XRP). To achieve the desired results, a univariate GARCH model was conducted in the first stage and a multivariate GARCH model in the second stage. These models were based on the daily prices of the five currencies, collected from Yahoo Finance, for a period between October 2017 and August 2021. The results obtained from the first model led to the conclusion that, especially in Bitcoin, past returns are not a good indicator of present and future returns. In the second model, it was tested whether the volatilities of this set of coins impacted, and if so, how, their returns were affected. From this model, it can be concluded that all currencies thrive on their volatility and that volatility in the other currencies presents a negative effect on their returns. In short, since this is a very volatile market, this volatility turns out to be positive for returns. Assuming this assumption, there is a great opportunity for day-to-day trading, and investors can watch for market dips and capitalize on the expected upside. |
id |
RCAP_b7334726df46caba6e637a518fbeffda |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/33751 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Volatility modeling in cryptocurrency markets: effects over returnsCryptocurrenciesGeneralized autoregressive conditional heteroskedasticity (GARCH) modelReturnsVolatilityThe proposed work aims to study the influence of Bitcoin's volatility on the return of a set of currencies, defined by Ethereum (ETH), Cardano (ADA), Binance coin (BNB), and Ripple (XRP). To achieve the desired results, a univariate GARCH model was conducted in the first stage and a multivariate GARCH model in the second stage. These models were based on the daily prices of the five currencies, collected from Yahoo Finance, for a period between October 2017 and August 2021. The results obtained from the first model led to the conclusion that, especially in Bitcoin, past returns are not a good indicator of present and future returns. In the second model, it was tested whether the volatilities of this set of coins impacted, and if so, how, their returns were affected. From this model, it can be concluded that all currencies thrive on their volatility and that volatility in the other currencies presents a negative effect on their returns. In short, since this is a very volatile market, this volatility turns out to be positive for returns. Assuming this assumption, there is a great opportunity for day-to-day trading, and investors can watch for market dips and capitalize on the expected upside.O trabalho que se propõe desenvolver pretende estudar a influência da volatilidade da Bitcoin no retorno de um conjunto de moedas, conjunto esse definido pela Ethereum (ETH), Cardano (ADA), Binance coin (BNB) e Ripple (XRP). Com o intuito de atingir os resultados pretendidos, conduziu-se, numa primeira fase, um modelo univariado GARCH e, numa segunda fase, um modelo multivariado GARCH. Estes modelos tinham como base de dados os preços diários das cinco moedas, recolhidos no Yahoo Finance, num período compreendido entre outubro de 2017 e agosto de 2021. Os resultados obtidos através do primeiro modelo levam à conclusão de que, principalmente na Bitcoin, os retornos passados não são um bom indicador de retornos presentes e futuros. No segundo modelo, foi testado se as volatilidades deste conjunto de moedas impactavam, e se sim como, os retornos das mesmas. Deste modelo pode-se concluir que todas as moedas prosperam com a sua própria volatilidade e que a volatilidade nas outras moedas tem um impacto negativo no retorno das próprias. Em suma, sendo este um mercado bastante volátil, esta volatilidade revela-se como sendo de influência positiva para os retornos. Assumindo esta premissa, existe uma grande oportunidade para “day-to-day trading”, sendo que os investidores podem estar atentos às quebras do mercado e capitalizar na expectável subida.2022-04-28T09:41:15Z2021-12-03T00:00:00Z2021-12-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/33751engAlmeida, Gonçalo Pereira deinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:04:55Zoai:ria.ua.pt:10773/33751Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:05.978609Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Volatility modeling in cryptocurrency markets: effects over returns |
title |
Volatility modeling in cryptocurrency markets: effects over returns |
spellingShingle |
Volatility modeling in cryptocurrency markets: effects over returns Almeida, Gonçalo Pereira de Cryptocurrencies Generalized autoregressive conditional heteroskedasticity (GARCH) model Returns Volatility |
title_short |
Volatility modeling in cryptocurrency markets: effects over returns |
title_full |
Volatility modeling in cryptocurrency markets: effects over returns |
title_fullStr |
Volatility modeling in cryptocurrency markets: effects over returns |
title_full_unstemmed |
Volatility modeling in cryptocurrency markets: effects over returns |
title_sort |
Volatility modeling in cryptocurrency markets: effects over returns |
author |
Almeida, Gonçalo Pereira de |
author_facet |
Almeida, Gonçalo Pereira de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Almeida, Gonçalo Pereira de |
dc.subject.por.fl_str_mv |
Cryptocurrencies Generalized autoregressive conditional heteroskedasticity (GARCH) model Returns Volatility |
topic |
Cryptocurrencies Generalized autoregressive conditional heteroskedasticity (GARCH) model Returns Volatility |
description |
The proposed work aims to study the influence of Bitcoin's volatility on the return of a set of currencies, defined by Ethereum (ETH), Cardano (ADA), Binance coin (BNB), and Ripple (XRP). To achieve the desired results, a univariate GARCH model was conducted in the first stage and a multivariate GARCH model in the second stage. These models were based on the daily prices of the five currencies, collected from Yahoo Finance, for a period between October 2017 and August 2021. The results obtained from the first model led to the conclusion that, especially in Bitcoin, past returns are not a good indicator of present and future returns. In the second model, it was tested whether the volatilities of this set of coins impacted, and if so, how, their returns were affected. From this model, it can be concluded that all currencies thrive on their volatility and that volatility in the other currencies presents a negative effect on their returns. In short, since this is a very volatile market, this volatility turns out to be positive for returns. Assuming this assumption, there is a great opportunity for day-to-day trading, and investors can watch for market dips and capitalize on the expected upside. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-03T00:00:00Z 2021-12-03 2022-04-28T09:41:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/33751 |
url |
http://hdl.handle.net/10773/33751 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137706407624704 |