Volatility modeling in cryptocurrency markets: effects over returns

Detalhes bibliográficos
Autor(a) principal: Almeida, Gonçalo Pereira de
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/33751
Resumo: The proposed work aims to study the influence of Bitcoin's volatility on the return of a set of currencies, defined by Ethereum (ETH), Cardano (ADA), Binance coin (BNB), and Ripple (XRP). To achieve the desired results, a univariate GARCH model was conducted in the first stage and a multivariate GARCH model in the second stage. These models were based on the daily prices of the five currencies, collected from Yahoo Finance, for a period between October 2017 and August 2021. The results obtained from the first model led to the conclusion that, especially in Bitcoin, past returns are not a good indicator of present and future returns. In the second model, it was tested whether the volatilities of this set of coins impacted, and if so, how, their returns were affected. From this model, it can be concluded that all currencies thrive on their volatility and that volatility in the other currencies presents a negative effect on their returns. In short, since this is a very volatile market, this volatility turns out to be positive for returns. Assuming this assumption, there is a great opportunity for day-to-day trading, and investors can watch for market dips and capitalize on the expected upside.
id RCAP_b7334726df46caba6e637a518fbeffda
oai_identifier_str oai:ria.ua.pt:10773/33751
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Volatility modeling in cryptocurrency markets: effects over returnsCryptocurrenciesGeneralized autoregressive conditional heteroskedasticity (GARCH) modelReturnsVolatilityThe proposed work aims to study the influence of Bitcoin's volatility on the return of a set of currencies, defined by Ethereum (ETH), Cardano (ADA), Binance coin (BNB), and Ripple (XRP). To achieve the desired results, a univariate GARCH model was conducted in the first stage and a multivariate GARCH model in the second stage. These models were based on the daily prices of the five currencies, collected from Yahoo Finance, for a period between October 2017 and August 2021. The results obtained from the first model led to the conclusion that, especially in Bitcoin, past returns are not a good indicator of present and future returns. In the second model, it was tested whether the volatilities of this set of coins impacted, and if so, how, their returns were affected. From this model, it can be concluded that all currencies thrive on their volatility and that volatility in the other currencies presents a negative effect on their returns. In short, since this is a very volatile market, this volatility turns out to be positive for returns. Assuming this assumption, there is a great opportunity for day-to-day trading, and investors can watch for market dips and capitalize on the expected upside.O trabalho que se propõe desenvolver pretende estudar a influência da volatilidade da Bitcoin no retorno de um conjunto de moedas, conjunto esse definido pela Ethereum (ETH), Cardano (ADA), Binance coin (BNB) e Ripple (XRP). Com o intuito de atingir os resultados pretendidos, conduziu-se, numa primeira fase, um modelo univariado GARCH e, numa segunda fase, um modelo multivariado GARCH. Estes modelos tinham como base de dados os preços diários das cinco moedas, recolhidos no Yahoo Finance, num período compreendido entre outubro de 2017 e agosto de 2021. Os resultados obtidos através do primeiro modelo levam à conclusão de que, principalmente na Bitcoin, os retornos passados não são um bom indicador de retornos presentes e futuros. No segundo modelo, foi testado se as volatilidades deste conjunto de moedas impactavam, e se sim como, os retornos das mesmas. Deste modelo pode-se concluir que todas as moedas prosperam com a sua própria volatilidade e que a volatilidade nas outras moedas tem um impacto negativo no retorno das próprias. Em suma, sendo este um mercado bastante volátil, esta volatilidade revela-se como sendo de influência positiva para os retornos. Assumindo esta premissa, existe uma grande oportunidade para “day-to-day trading”, sendo que os investidores podem estar atentos às quebras do mercado e capitalizar na expectável subida.2022-04-28T09:41:15Z2021-12-03T00:00:00Z2021-12-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/33751engAlmeida, Gonçalo Pereira deinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:04:55Zoai:ria.ua.pt:10773/33751Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:05.978609Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Volatility modeling in cryptocurrency markets: effects over returns
title Volatility modeling in cryptocurrency markets: effects over returns
spellingShingle Volatility modeling in cryptocurrency markets: effects over returns
Almeida, Gonçalo Pereira de
Cryptocurrencies
Generalized autoregressive conditional heteroskedasticity (GARCH) model
Returns
Volatility
title_short Volatility modeling in cryptocurrency markets: effects over returns
title_full Volatility modeling in cryptocurrency markets: effects over returns
title_fullStr Volatility modeling in cryptocurrency markets: effects over returns
title_full_unstemmed Volatility modeling in cryptocurrency markets: effects over returns
title_sort Volatility modeling in cryptocurrency markets: effects over returns
author Almeida, Gonçalo Pereira de
author_facet Almeida, Gonçalo Pereira de
author_role author
dc.contributor.author.fl_str_mv Almeida, Gonçalo Pereira de
dc.subject.por.fl_str_mv Cryptocurrencies
Generalized autoregressive conditional heteroskedasticity (GARCH) model
Returns
Volatility
topic Cryptocurrencies
Generalized autoregressive conditional heteroskedasticity (GARCH) model
Returns
Volatility
description The proposed work aims to study the influence of Bitcoin's volatility on the return of a set of currencies, defined by Ethereum (ETH), Cardano (ADA), Binance coin (BNB), and Ripple (XRP). To achieve the desired results, a univariate GARCH model was conducted in the first stage and a multivariate GARCH model in the second stage. These models were based on the daily prices of the five currencies, collected from Yahoo Finance, for a period between October 2017 and August 2021. The results obtained from the first model led to the conclusion that, especially in Bitcoin, past returns are not a good indicator of present and future returns. In the second model, it was tested whether the volatilities of this set of coins impacted, and if so, how, their returns were affected. From this model, it can be concluded that all currencies thrive on their volatility and that volatility in the other currencies presents a negative effect on their returns. In short, since this is a very volatile market, this volatility turns out to be positive for returns. Assuming this assumption, there is a great opportunity for day-to-day trading, and investors can watch for market dips and capitalize on the expected upside.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-03T00:00:00Z
2021-12-03
2022-04-28T09:41:15Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/33751
url http://hdl.handle.net/10773/33751
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137706407624704