Modelling irregularly spaced time series under preferential sampling
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/30279 |
Resumo: | Irregularly spaced time series are commonly encountered in the analysis of time series. A particular case is that in which the collection procedure over time depends also on the observed values. In such situations, there is stochastic dependence between the process being modeled and the times at which the observations are made. Ignoring this dependence can lead to biased estimates and misleading inferences. In this paper, we introduce the concept of preferential sampling in the temporal dimension and we propose a model to make inference and prediction. The methodology is illustrated using artificial data as well a real data set. |
id |
RCAP_b81dba727a3e67c3c2e008afc46356a1 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/30279 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modelling irregularly spaced time series under preferential samplingPreferential samplingTime seriesContinuous time autoregressive processSPDEIrregularly spaced time series are commonly encountered in the analysis of time series. A particular case is that in which the collection procedure over time depends also on the observed values. In such situations, there is stochastic dependence between the process being modeled and the times at which the observations are made. Ignoring this dependence can lead to biased estimates and misleading inferences. In this paper, we introduce the concept of preferential sampling in the temporal dimension and we propose a model to make inference and prediction. The methodology is illustrated using artificial data as well a real data set.Instituto Nacional de Estatística2021-01-11T18:53:07Z2020-10-01T00:00:00Z2020-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/30279eng1645-6726Monteiro, AndreiaMenezes, RaquelSilva, Maria Eduardainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:58:29Zoai:ria.ua.pt:10773/30279Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:24.027937Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modelling irregularly spaced time series under preferential sampling |
title |
Modelling irregularly spaced time series under preferential sampling |
spellingShingle |
Modelling irregularly spaced time series under preferential sampling Monteiro, Andreia Preferential sampling Time series Continuous time autoregressive process SPDE |
title_short |
Modelling irregularly spaced time series under preferential sampling |
title_full |
Modelling irregularly spaced time series under preferential sampling |
title_fullStr |
Modelling irregularly spaced time series under preferential sampling |
title_full_unstemmed |
Modelling irregularly spaced time series under preferential sampling |
title_sort |
Modelling irregularly spaced time series under preferential sampling |
author |
Monteiro, Andreia |
author_facet |
Monteiro, Andreia Menezes, Raquel Silva, Maria Eduarda |
author_role |
author |
author2 |
Menezes, Raquel Silva, Maria Eduarda |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Monteiro, Andreia Menezes, Raquel Silva, Maria Eduarda |
dc.subject.por.fl_str_mv |
Preferential sampling Time series Continuous time autoregressive process SPDE |
topic |
Preferential sampling Time series Continuous time autoregressive process SPDE |
description |
Irregularly spaced time series are commonly encountered in the analysis of time series. A particular case is that in which the collection procedure over time depends also on the observed values. In such situations, there is stochastic dependence between the process being modeled and the times at which the observations are made. Ignoring this dependence can lead to biased estimates and misleading inferences. In this paper, we introduce the concept of preferential sampling in the temporal dimension and we propose a model to make inference and prediction. The methodology is illustrated using artificial data as well a real data set. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10-01T00:00:00Z 2020-10 2021-01-11T18:53:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/30279 |
url |
http://hdl.handle.net/10773/30279 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1645-6726 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Nacional de Estatística |
publisher.none.fl_str_mv |
Instituto Nacional de Estatística |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137679393161216 |