Fractional pennes' bioheat equation: theoretical and numerical studies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/38378 |
Resumo: | In this work we provide a new mathematical model for the Pennes’ bioheat equation, assuming a fractional time derivative of single order. Alternative versions of the bioheat equation are studied and discussed, to take into account the temperature-dependent variability in the tissue perfusion, and both finite and infinite speed of heat propagation. The proposed bioheat model is solved numerically using an implicit finite difference scheme that we prove to be convergent and stable. The numerical method proposed can be applied to general reaction diffusion equations, with a variable diffusion coefficient. The results obtained with the single order fractional model, are compared with the original models that use classical derivatives. |
id |
RCAP_b83fda4664351afc9c3a2c5491823b87 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/38378 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Fractional pennes' bioheat equation: theoretical and numerical studiesFractional differential equationsCaputo derivativeBioheat equationStabilityConvergencefractional differential equationsEngenharia e Tecnologia::Engenharia dos MateriaisScience & TechnologyIn this work we provide a new mathematical model for the Pennes’ bioheat equation, assuming a fractional time derivative of single order. Alternative versions of the bioheat equation are studied and discussed, to take into account the temperature-dependent variability in the tissue perfusion, and both finite and infinite speed of heat propagation. The proposed bioheat model is solved numerically using an implicit finite difference scheme that we prove to be convergent and stable. The numerical method proposed can be applied to general reaction diffusion equations, with a variable diffusion coefficient. The results obtained with the single order fractional model, are compared with the original models that use classical derivatives.The authors L.L. Ferras and J. M. Nobrega acknowledge financial funding by FEDER through the COMPETE 2020 Programme and by FCT Portuguese Foundation for Science and Technology under Projects UID/CTM/50025/2013 and EXPL/CTM-POL/1299/2013. L.L. Ferras acknowledges financial funding by the Portuguese Foundation for Science and Technology through the scholarship SFRH/BPD/100353/2014. M. Rebelo acknowledges financial funding by the Portuguese Foundation for Science and Technology through Project UID/MAT/00297/2013.Springer VerlagUniversidade do MinhoFerrás, Luís Jorge LimaFord, N. J.Morgado, M. L.Nóbrega, J. M.Rebelo, M. S.20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/38378engFerras, L. L., Ford, N. J., Morgado, M. L., Nóbrega, J. A. M., & Rebelo, M. S. (2015). Fractional pennes' bioheat equation: theoretical and numerical studies. Fractional Calculus and Applied Analysis, 18(4), 1080-1106. doi: 10.1515/fca-2015-00621311-045410.1515/fca-2015-0062info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:10:12Zoai:repositorium.sdum.uminho.pt:1822/38378Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:01:46.174129Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Fractional pennes' bioheat equation: theoretical and numerical studies |
title |
Fractional pennes' bioheat equation: theoretical and numerical studies |
spellingShingle |
Fractional pennes' bioheat equation: theoretical and numerical studies Ferrás, Luís Jorge Lima Fractional differential equations Caputo derivative Bioheat equation Stability Convergence fractional differential equations Engenharia e Tecnologia::Engenharia dos Materiais Science & Technology |
title_short |
Fractional pennes' bioheat equation: theoretical and numerical studies |
title_full |
Fractional pennes' bioheat equation: theoretical and numerical studies |
title_fullStr |
Fractional pennes' bioheat equation: theoretical and numerical studies |
title_full_unstemmed |
Fractional pennes' bioheat equation: theoretical and numerical studies |
title_sort |
Fractional pennes' bioheat equation: theoretical and numerical studies |
author |
Ferrás, Luís Jorge Lima |
author_facet |
Ferrás, Luís Jorge Lima Ford, N. J. Morgado, M. L. Nóbrega, J. M. Rebelo, M. S. |
author_role |
author |
author2 |
Ford, N. J. Morgado, M. L. Nóbrega, J. M. Rebelo, M. S. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Ferrás, Luís Jorge Lima Ford, N. J. Morgado, M. L. Nóbrega, J. M. Rebelo, M. S. |
dc.subject.por.fl_str_mv |
Fractional differential equations Caputo derivative Bioheat equation Stability Convergence fractional differential equations Engenharia e Tecnologia::Engenharia dos Materiais Science & Technology |
topic |
Fractional differential equations Caputo derivative Bioheat equation Stability Convergence fractional differential equations Engenharia e Tecnologia::Engenharia dos Materiais Science & Technology |
description |
In this work we provide a new mathematical model for the Pennes’ bioheat equation, assuming a fractional time derivative of single order. Alternative versions of the bioheat equation are studied and discussed, to take into account the temperature-dependent variability in the tissue perfusion, and both finite and infinite speed of heat propagation. The proposed bioheat model is solved numerically using an implicit finite difference scheme that we prove to be convergent and stable. The numerical method proposed can be applied to general reaction diffusion equations, with a variable diffusion coefficient. The results obtained with the single order fractional model, are compared with the original models that use classical derivatives. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2015-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/38378 |
url |
http://hdl.handle.net/1822/38378 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ferras, L. L., Ford, N. J., Morgado, M. L., Nóbrega, J. A. M., & Rebelo, M. S. (2015). Fractional pennes' bioheat equation: theoretical and numerical studies. Fractional Calculus and Applied Analysis, 18(4), 1080-1106. doi: 10.1515/fca-2015-0062 1311-0454 10.1515/fca-2015-0062 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132417974337536 |