Fractional pennes' bioheat equation: theoretical and numerical studies

Detalhes bibliográficos
Autor(a) principal: Ferrás, Luís Jorge Lima
Data de Publicação: 2015
Outros Autores: Ford, N. J., Morgado, M. L., Nóbrega, J. M., Rebelo, M. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/38378
Resumo: In this work we provide a new mathematical model for the Pennes’ bioheat equation, assuming a fractional time derivative of single order. Alternative versions of the bioheat equation are studied and discussed, to take into account the temperature-dependent variability in the tissue perfusion, and both finite and infinite speed of heat propagation. The proposed bioheat model is solved numerically using an implicit finite difference scheme that we prove to be convergent and stable. The numerical method proposed can be applied to general reaction diffusion equations, with a variable diffusion coefficient. The results obtained with the single order fractional model, are compared with the original models that use classical derivatives.
id RCAP_b83fda4664351afc9c3a2c5491823b87
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/38378
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Fractional pennes' bioheat equation: theoretical and numerical studiesFractional differential equationsCaputo derivativeBioheat equationStabilityConvergencefractional differential equationsEngenharia e Tecnologia::Engenharia dos MateriaisScience & TechnologyIn this work we provide a new mathematical model for the Pennes’ bioheat equation, assuming a fractional time derivative of single order. Alternative versions of the bioheat equation are studied and discussed, to take into account the temperature-dependent variability in the tissue perfusion, and both finite and infinite speed of heat propagation. The proposed bioheat model is solved numerically using an implicit finite difference scheme that we prove to be convergent and stable. The numerical method proposed can be applied to general reaction diffusion equations, with a variable diffusion coefficient. The results obtained with the single order fractional model, are compared with the original models that use classical derivatives.The authors L.L. Ferras and J. M. Nobrega acknowledge financial funding by FEDER through the COMPETE 2020 Programme and by FCT Portuguese Foundation for Science and Technology under Projects UID/CTM/50025/2013 and EXPL/CTM-POL/1299/2013. L.L. Ferras acknowledges financial funding by the Portuguese Foundation for Science and Technology through the scholarship SFRH/BPD/100353/2014. M. Rebelo acknowledges financial funding by the Portuguese Foundation for Science and Technology through Project UID/MAT/00297/2013.Springer VerlagUniversidade do MinhoFerrás, Luís Jorge LimaFord, N. J.Morgado, M. L.Nóbrega, J. M.Rebelo, M. S.20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/38378engFerras, L. L., Ford, N. J., Morgado, M. L., Nóbrega, J. A. M., & Rebelo, M. S. (2015). Fractional pennes' bioheat equation: theoretical and numerical studies. Fractional Calculus and Applied Analysis, 18(4), 1080-1106. doi: 10.1515/fca-2015-00621311-045410.1515/fca-2015-0062info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:10:12Zoai:repositorium.sdum.uminho.pt:1822/38378Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:01:46.174129Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Fractional pennes' bioheat equation: theoretical and numerical studies
title Fractional pennes' bioheat equation: theoretical and numerical studies
spellingShingle Fractional pennes' bioheat equation: theoretical and numerical studies
Ferrás, Luís Jorge Lima
Fractional differential equations
Caputo derivative
Bioheat equation
Stability
Convergence
fractional differential equations
Engenharia e Tecnologia::Engenharia dos Materiais
Science & Technology
title_short Fractional pennes' bioheat equation: theoretical and numerical studies
title_full Fractional pennes' bioheat equation: theoretical and numerical studies
title_fullStr Fractional pennes' bioheat equation: theoretical and numerical studies
title_full_unstemmed Fractional pennes' bioheat equation: theoretical and numerical studies
title_sort Fractional pennes' bioheat equation: theoretical and numerical studies
author Ferrás, Luís Jorge Lima
author_facet Ferrás, Luís Jorge Lima
Ford, N. J.
Morgado, M. L.
Nóbrega, J. M.
Rebelo, M. S.
author_role author
author2 Ford, N. J.
Morgado, M. L.
Nóbrega, J. M.
Rebelo, M. S.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Ferrás, Luís Jorge Lima
Ford, N. J.
Morgado, M. L.
Nóbrega, J. M.
Rebelo, M. S.
dc.subject.por.fl_str_mv Fractional differential equations
Caputo derivative
Bioheat equation
Stability
Convergence
fractional differential equations
Engenharia e Tecnologia::Engenharia dos Materiais
Science & Technology
topic Fractional differential equations
Caputo derivative
Bioheat equation
Stability
Convergence
fractional differential equations
Engenharia e Tecnologia::Engenharia dos Materiais
Science & Technology
description In this work we provide a new mathematical model for the Pennes’ bioheat equation, assuming a fractional time derivative of single order. Alternative versions of the bioheat equation are studied and discussed, to take into account the temperature-dependent variability in the tissue perfusion, and both finite and infinite speed of heat propagation. The proposed bioheat model is solved numerically using an implicit finite difference scheme that we prove to be convergent and stable. The numerical method proposed can be applied to general reaction diffusion equations, with a variable diffusion coefficient. The results obtained with the single order fractional model, are compared with the original models that use classical derivatives.
publishDate 2015
dc.date.none.fl_str_mv 2015
2015-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/38378
url http://hdl.handle.net/1822/38378
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ferras, L. L., Ford, N. J., Morgado, M. L., Nóbrega, J. A. M., & Rebelo, M. S. (2015). Fractional pennes' bioheat equation: theoretical and numerical studies. Fractional Calculus and Applied Analysis, 18(4), 1080-1106. doi: 10.1515/fca-2015-0062
1311-0454
10.1515/fca-2015-0062
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132417974337536