Previsão da ocorrência de blooms de cianobactérias na Albufeira do Roxo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/28424 |
Resumo: | Tese de mestrado, Engenharia Farmacêutica, Universidade de Lisboa, Faculdade de Farmácia, 2017 |
id |
RCAP_b87a6af4fd3a66f941e817b9b6d339c4 |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/28424 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Previsão da ocorrência de blooms de cianobactérias na Albufeira do RoxoCianobactériasGestão Qualidade da ÁguaModelaçãoPrevisãoRedes Neuronais ArtificiaisTeses de mestrado - 2017Ciências da SaúdeTese de mestrado, Engenharia Farmacêutica, Universidade de Lisboa, Faculdade de Farmácia, 2017A ocorrência de blooms de cianobactérias é um fenómeno que acarreta inúmeros problemas para as entidades gestoras de serviços de águas, como a redução da qualidade de água, podendo mesmo ter consequências graves para o Homem devido à presença de cianotoxinas. Estes eventos resultam da interação complexa de vários fatores, como parâmetros de qualidade da água, condições meteorológicas e competição entre espécies, tornando-se a sua previsão um desafio particular e de elevada relevância para as entidades gestoras dos serviços de águas. Este trabalho teve como objetivo a criação de um modelo de previsão antecipada dos blooms de cianobactérias, utilizando dados do caso particular da Albufeira do Roxo (Portugal). Os dados correspondem aos parâmetros de monitorização de qualidade de água da Albufeira e a parâmetros meteorológicos, recolhidos entre 2007 e 2015. Construíram-se modelos recorrendo a técnicas lineares (mínimos quadrados parciais) e não lineares (redes neuronais artificiais), para prever a densidade de cianobactérias em termos de um limiar de alerta, que corresponde a 20 000 células/mL. O modelo gerado por uma rede neuronal do tipo feedforward com uma camada oculta com quatro nodos foi o que melhor se ajustou aos dados experimentais, apresentando um erro quadrático médio de 6,51x107 células/mL. Este modelo, com doze variáveis de entrada (temperatura do ar, velocidade do vento, direção do vento, temperatura da água, pH, condutividade, turvação, cota, azoto amoniacal, dureza, precipitação e radiação), foi testado para os dados de 2016. Apesar do erro de previsão para a densidade de cianobactérias ser elevado, o modelo identificou situações de alerta, cumprindo assim o objetivo proposto.Cyanobacteria blooms occurrence is a phenomenon which entails numerous problems for managing bodies of water services, such as reducing the water quality and which may even have serious consequences for humans due to the presence of cyanotoxins. These events result from the complex interaction of several factors such as water quality parameters, the weather conditions and competition between species, making prediction a particular challenge of great relevance for managing bodies of water services. This work aims at developing early prediction models for cyanobacterial blooms, using data from the particular case of Albufeira do Roxo (Portugal). Data correspond to the parameters used to monitor water quality of the reservoir and meteorological data collected between 2007 and 2015. Models based on linear (partial least squares) and non-linear (artificial neural networks) techniques were built to predict cyanobacterial density in terms of an alert value, corresponding to 20 000 cells/mL. The model generated by a feedforward neural network with a four nodes hidden layer, produced the best fit to the experimental data, showing a mean square error of 6.51x107 cells/mL. This model, with twelve input variables (air temperature, wind speed, wind direction, water temperature, pH, conductivity, turbidity, water level, ammonium, hardness, precipitation and radiation), was tested with data collected in 2016. Although the prediction error for cyanobacterial density was high, the model successfully identified alert events, thus fulfilling the foreseen objective.Lopes, João AlmeidaBrôco, Nuno Rafael da ConceiçãoRepositório da Universidade de LisboaRamos, Sara Margarida Nunes2017-07-19T16:04:43Z2017-01-232016-11-222017-01-23T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10451/28424TID:201598949porinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T16:20:17Zoai:repositorio.ul.pt:10451/28424Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:44:43.155583Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Previsão da ocorrência de blooms de cianobactérias na Albufeira do Roxo |
title |
Previsão da ocorrência de blooms de cianobactérias na Albufeira do Roxo |
spellingShingle |
Previsão da ocorrência de blooms de cianobactérias na Albufeira do Roxo Ramos, Sara Margarida Nunes Cianobactérias Gestão Qualidade da Água Modelação Previsão Redes Neuronais Artificiais Teses de mestrado - 2017 Ciências da Saúde |
title_short |
Previsão da ocorrência de blooms de cianobactérias na Albufeira do Roxo |
title_full |
Previsão da ocorrência de blooms de cianobactérias na Albufeira do Roxo |
title_fullStr |
Previsão da ocorrência de blooms de cianobactérias na Albufeira do Roxo |
title_full_unstemmed |
Previsão da ocorrência de blooms de cianobactérias na Albufeira do Roxo |
title_sort |
Previsão da ocorrência de blooms de cianobactérias na Albufeira do Roxo |
author |
Ramos, Sara Margarida Nunes |
author_facet |
Ramos, Sara Margarida Nunes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lopes, João Almeida Brôco, Nuno Rafael da Conceição Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Ramos, Sara Margarida Nunes |
dc.subject.por.fl_str_mv |
Cianobactérias Gestão Qualidade da Água Modelação Previsão Redes Neuronais Artificiais Teses de mestrado - 2017 Ciências da Saúde |
topic |
Cianobactérias Gestão Qualidade da Água Modelação Previsão Redes Neuronais Artificiais Teses de mestrado - 2017 Ciências da Saúde |
description |
Tese de mestrado, Engenharia Farmacêutica, Universidade de Lisboa, Faculdade de Farmácia, 2017 |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-11-22 2017-07-19T16:04:43Z 2017-01-23 2017-01-23T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/28424 TID:201598949 |
url |
http://hdl.handle.net/10451/28424 |
identifier_str_mv |
TID:201598949 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134368135905280 |