Semilinear neumann equations with indefinite and unbounded potential

Detalhes bibliográficos
Autor(a) principal: Aizicovici, Sergiu
Data de Publicação: 2016
Outros Autores: Papageorgiou, Nikolaos S., Staicu, Vasile
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/15436
Resumo: We consider a semilinear Neumann problem with an indefinite and unbounded potential, and a Carathéodory reaction term. Under asymptotic conditions on the reaction which make the energy functional coercive, we prove multiplicity theorems producing three or four solutions with sign information on them. Our approach combines variational methods based on the critical point theory with suitable perturbation and truncation techniques, and with Morse theory.
id RCAP_ba6bd11e3fa1b15622f71b2e869e06b5
oai_identifier_str oai:ria.ua.pt:10773/15436
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Semilinear neumann equations with indefinite and unbounded potentialIndefinite and unbounded potentialCritical goupsMultiple solutionsRegularity theoryMaximum principleNodal solutionsWe consider a semilinear Neumann problem with an indefinite and unbounded potential, and a Carathéodory reaction term. Under asymptotic conditions on the reaction which make the energy functional coercive, we prove multiplicity theorems producing three or four solutions with sign information on them. Our approach combines variational methods based on the critical point theory with suitable perturbation and truncation techniques, and with Morse theory.University of Houston2016-04-13T10:06:19Z2016-01-01T00:00:00Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15436eng0362-1588Aizicovici, SergiuPapageorgiou, Nikolaos S.Staicu, Vasileinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:28:29Zoai:ria.ua.pt:10773/15436Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:45.962784Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Semilinear neumann equations with indefinite and unbounded potential
title Semilinear neumann equations with indefinite and unbounded potential
spellingShingle Semilinear neumann equations with indefinite and unbounded potential
Aizicovici, Sergiu
Indefinite and unbounded potential
Critical goups
Multiple solutions
Regularity theory
Maximum principle
Nodal solutions
title_short Semilinear neumann equations with indefinite and unbounded potential
title_full Semilinear neumann equations with indefinite and unbounded potential
title_fullStr Semilinear neumann equations with indefinite and unbounded potential
title_full_unstemmed Semilinear neumann equations with indefinite and unbounded potential
title_sort Semilinear neumann equations with indefinite and unbounded potential
author Aizicovici, Sergiu
author_facet Aizicovici, Sergiu
Papageorgiou, Nikolaos S.
Staicu, Vasile
author_role author
author2 Papageorgiou, Nikolaos S.
Staicu, Vasile
author2_role author
author
dc.contributor.author.fl_str_mv Aizicovici, Sergiu
Papageorgiou, Nikolaos S.
Staicu, Vasile
dc.subject.por.fl_str_mv Indefinite and unbounded potential
Critical goups
Multiple solutions
Regularity theory
Maximum principle
Nodal solutions
topic Indefinite and unbounded potential
Critical goups
Multiple solutions
Regularity theory
Maximum principle
Nodal solutions
description We consider a semilinear Neumann problem with an indefinite and unbounded potential, and a Carathéodory reaction term. Under asymptotic conditions on the reaction which make the energy functional coercive, we prove multiplicity theorems producing three or four solutions with sign information on them. Our approach combines variational methods based on the critical point theory with suitable perturbation and truncation techniques, and with Morse theory.
publishDate 2016
dc.date.none.fl_str_mv 2016-04-13T10:06:19Z
2016-01-01T00:00:00Z
2016
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/15436
url http://hdl.handle.net/10773/15436
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0362-1588
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv University of Houston
publisher.none.fl_str_mv University of Houston
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137557406023680