Customer Churn Prediction in Portuguese Banking Sector: Using a Machine Learning Approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/163771 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
id |
RCAP_badeb2d2bea5cb0d4b3045939c13742d |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/163771 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Customer Churn Prediction in Portuguese Banking Sector: Using a Machine Learning ApproachBanking SectorBusiness IntelligenceCustomer ChurnMachine LearningPower BISDG 8 - Decent work and economic growthSDG 9 - Industry, innovation and infrastructureDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoDissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceThis study focuses on developing a predictive model for customer churn in a Portuguese bank, using machine learning techniques. Following the CRISP-DM methodology, the analysis encompasses comprehensive EDA, data preparation and visualizations, laying the foundation for model selection. Whitin the subset of evaluated models, such as tree-based and ensembled models, Gradient Boosting emerges as a standout performer, demonstrating notable predictive capabilities. Beyond the identification of customers at risk to churn, this model provides valuable insights, crafting proactive retention strategies. The precision in identifying customers with a high probability of churn enhances informed decision-making. For that reason, an interactive dashboard is developed to empower stakeholders in addressing potential churn risks. These findings underscore the importance of leveraging machine learning in banking scenarios, emphasizing the potential for predictive analytics to enhance customer retention strategies and overall business outcomes.Neto, Miguel de Castro Simões FerreiraJardim, João Bruno Morais de SousaRUNPires, Inês Tomás2024-02-19T19:14:02Z2024-01-292024-01-29T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/163771TID:203524896enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:48:41Zoai:run.unl.pt:10362/163771Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:59:51.035751Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Customer Churn Prediction in Portuguese Banking Sector: Using a Machine Learning Approach |
title |
Customer Churn Prediction in Portuguese Banking Sector: Using a Machine Learning Approach |
spellingShingle |
Customer Churn Prediction in Portuguese Banking Sector: Using a Machine Learning Approach Pires, Inês Tomás Banking Sector Business Intelligence Customer Churn Machine Learning Power BI SDG 8 - Decent work and economic growth SDG 9 - Industry, innovation and infrastructure Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
title_short |
Customer Churn Prediction in Portuguese Banking Sector: Using a Machine Learning Approach |
title_full |
Customer Churn Prediction in Portuguese Banking Sector: Using a Machine Learning Approach |
title_fullStr |
Customer Churn Prediction in Portuguese Banking Sector: Using a Machine Learning Approach |
title_full_unstemmed |
Customer Churn Prediction in Portuguese Banking Sector: Using a Machine Learning Approach |
title_sort |
Customer Churn Prediction in Portuguese Banking Sector: Using a Machine Learning Approach |
author |
Pires, Inês Tomás |
author_facet |
Pires, Inês Tomás |
author_role |
author |
dc.contributor.none.fl_str_mv |
Neto, Miguel de Castro Simões Ferreira Jardim, João Bruno Morais de Sousa RUN |
dc.contributor.author.fl_str_mv |
Pires, Inês Tomás |
dc.subject.por.fl_str_mv |
Banking Sector Business Intelligence Customer Churn Machine Learning Power BI SDG 8 - Decent work and economic growth SDG 9 - Industry, innovation and infrastructure Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
topic |
Banking Sector Business Intelligence Customer Churn Machine Learning Power BI SDG 8 - Decent work and economic growth SDG 9 - Industry, innovation and infrastructure Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02-19T19:14:02Z 2024-01-29 2024-01-29T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/163771 TID:203524896 |
url |
http://hdl.handle.net/10362/163771 |
identifier_str_mv |
TID:203524896 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138175077056512 |