On the asymmetric zero-range in the rarefaction fan
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/27339 |
Resumo: | We consider one-dimensional asymmetric zero-range processes starting from a step decreasing profile leading, in the hydrodynamic limit, to the rarefaction fan of the associated hydrodynamic equation. Under that initial condition, and for {\em{ totally asymmetric jumps}}, we show that the weighted sum of joint probabilities for second class particles sharing the same site is convergent and we compute its limit. For {\em{partially asymmetric jumps}}, we derive the Law of Large Numbers for a second class particle, under the initial configuration in which all positive sites are empty, all negative sites are occupied with infinitely many first class particles and there is a single second class particle at the origin. Moreover, we prove that among the infinite characteristics emanating from the position of the second class particle it picks randomly one of them. The randomness is given in terms of the weak solution of the hydrodynamic equation, through some sort of renormalization function. By coupling the {\em{constant-rate totally asymmetric zero-range}} with the totally asymmetric simple exclusion, we derive limiting laws for more general initial conditions. |
id |
RCAP_bb345515210ee76a8995ae572fb7d51b |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/27339 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the asymmetric zero-range in the rarefaction fanAsymmetric zero-rangeRarefaction fanSecond class particlesScience & TechnologyWe consider one-dimensional asymmetric zero-range processes starting from a step decreasing profile leading, in the hydrodynamic limit, to the rarefaction fan of the associated hydrodynamic equation. Under that initial condition, and for {\em{ totally asymmetric jumps}}, we show that the weighted sum of joint probabilities for second class particles sharing the same site is convergent and we compute its limit. For {\em{partially asymmetric jumps}}, we derive the Law of Large Numbers for a second class particle, under the initial configuration in which all positive sites are empty, all negative sites are occupied with infinitely many first class particles and there is a single second class particle at the origin. Moreover, we prove that among the infinite characteristics emanating from the position of the second class particle it picks randomly one of them. The randomness is given in terms of the weak solution of the hydrodynamic equation, through some sort of renormalization function. By coupling the {\em{constant-rate totally asymmetric zero-range}} with the totally asymmetric simple exclusion, we derive limiting laws for more general initial conditions.FCTSpringer VerlagUniversidade do MinhoGonçalves, Patrícia2014-01-022014-01-02T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/27339eng0022-471510.1007/s10955-013-0892-8info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T11:58:45Zoai:repositorium.sdum.uminho.pt:1822/27339Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:48:31.101752Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the asymmetric zero-range in the rarefaction fan |
title |
On the asymmetric zero-range in the rarefaction fan |
spellingShingle |
On the asymmetric zero-range in the rarefaction fan Gonçalves, Patrícia Asymmetric zero-range Rarefaction fan Second class particles Science & Technology |
title_short |
On the asymmetric zero-range in the rarefaction fan |
title_full |
On the asymmetric zero-range in the rarefaction fan |
title_fullStr |
On the asymmetric zero-range in the rarefaction fan |
title_full_unstemmed |
On the asymmetric zero-range in the rarefaction fan |
title_sort |
On the asymmetric zero-range in the rarefaction fan |
author |
Gonçalves, Patrícia |
author_facet |
Gonçalves, Patrícia |
author_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Gonçalves, Patrícia |
dc.subject.por.fl_str_mv |
Asymmetric zero-range Rarefaction fan Second class particles Science & Technology |
topic |
Asymmetric zero-range Rarefaction fan Second class particles Science & Technology |
description |
We consider one-dimensional asymmetric zero-range processes starting from a step decreasing profile leading, in the hydrodynamic limit, to the rarefaction fan of the associated hydrodynamic equation. Under that initial condition, and for {\em{ totally asymmetric jumps}}, we show that the weighted sum of joint probabilities for second class particles sharing the same site is convergent and we compute its limit. For {\em{partially asymmetric jumps}}, we derive the Law of Large Numbers for a second class particle, under the initial configuration in which all positive sites are empty, all negative sites are occupied with infinitely many first class particles and there is a single second class particle at the origin. Moreover, we prove that among the infinite characteristics emanating from the position of the second class particle it picks randomly one of them. The randomness is given in terms of the weak solution of the hydrodynamic equation, through some sort of renormalization function. By coupling the {\em{constant-rate totally asymmetric zero-range}} with the totally asymmetric simple exclusion, we derive limiting laws for more general initial conditions. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-02 2014-01-02T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/27339 |
url |
http://hdl.handle.net/1822/27339 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0022-4715 10.1007/s10955-013-0892-8 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132246521675776 |