On the asymmetric zero-range in the rarefaction fan

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Patrícia
Data de Publicação: 2014
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/27339
Resumo: We consider one-dimensional asymmetric zero-range processes starting from a step decreasing profile leading, in the hydrodynamic limit, to the rarefaction fan of the associated hydrodynamic equation. Under that initial condition, and for {\em{ totally asymmetric jumps}}, we show that the weighted sum of joint probabilities for second class particles sharing the same site is convergent and we compute its limit. For {\em{partially asymmetric jumps}}, we derive the Law of Large Numbers for a second class particle, under the initial configuration in which all positive sites are empty, all negative sites are occupied with infinitely many first class particles and there is a single second class particle at the origin. Moreover, we prove that among the infinite characteristics emanating from the position of the second class particle it picks randomly one of them. The randomness is given in terms of the weak solution of the hydrodynamic equation, through some sort of renormalization function. By coupling the {\em{constant-rate totally asymmetric zero-range}} with the totally asymmetric simple exclusion, we derive limiting laws for more general initial conditions.
id RCAP_bb345515210ee76a8995ae572fb7d51b
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/27339
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On the asymmetric zero-range in the rarefaction fanAsymmetric zero-rangeRarefaction fanSecond class particlesScience & TechnologyWe consider one-dimensional asymmetric zero-range processes starting from a step decreasing profile leading, in the hydrodynamic limit, to the rarefaction fan of the associated hydrodynamic equation. Under that initial condition, and for {\em{ totally asymmetric jumps}}, we show that the weighted sum of joint probabilities for second class particles sharing the same site is convergent and we compute its limit. For {\em{partially asymmetric jumps}}, we derive the Law of Large Numbers for a second class particle, under the initial configuration in which all positive sites are empty, all negative sites are occupied with infinitely many first class particles and there is a single second class particle at the origin. Moreover, we prove that among the infinite characteristics emanating from the position of the second class particle it picks randomly one of them. The randomness is given in terms of the weak solution of the hydrodynamic equation, through some sort of renormalization function. By coupling the {\em{constant-rate totally asymmetric zero-range}} with the totally asymmetric simple exclusion, we derive limiting laws for more general initial conditions.FCTSpringer VerlagUniversidade do MinhoGonçalves, Patrícia2014-01-022014-01-02T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/27339eng0022-471510.1007/s10955-013-0892-8info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T11:58:45Zoai:repositorium.sdum.uminho.pt:1822/27339Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:48:31.101752Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On the asymmetric zero-range in the rarefaction fan
title On the asymmetric zero-range in the rarefaction fan
spellingShingle On the asymmetric zero-range in the rarefaction fan
Gonçalves, Patrícia
Asymmetric zero-range
Rarefaction fan
Second class particles
Science & Technology
title_short On the asymmetric zero-range in the rarefaction fan
title_full On the asymmetric zero-range in the rarefaction fan
title_fullStr On the asymmetric zero-range in the rarefaction fan
title_full_unstemmed On the asymmetric zero-range in the rarefaction fan
title_sort On the asymmetric zero-range in the rarefaction fan
author Gonçalves, Patrícia
author_facet Gonçalves, Patrícia
author_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Gonçalves, Patrícia
dc.subject.por.fl_str_mv Asymmetric zero-range
Rarefaction fan
Second class particles
Science & Technology
topic Asymmetric zero-range
Rarefaction fan
Second class particles
Science & Technology
description We consider one-dimensional asymmetric zero-range processes starting from a step decreasing profile leading, in the hydrodynamic limit, to the rarefaction fan of the associated hydrodynamic equation. Under that initial condition, and for {\em{ totally asymmetric jumps}}, we show that the weighted sum of joint probabilities for second class particles sharing the same site is convergent and we compute its limit. For {\em{partially asymmetric jumps}}, we derive the Law of Large Numbers for a second class particle, under the initial configuration in which all positive sites are empty, all negative sites are occupied with infinitely many first class particles and there is a single second class particle at the origin. Moreover, we prove that among the infinite characteristics emanating from the position of the second class particle it picks randomly one of them. The randomness is given in terms of the weak solution of the hydrodynamic equation, through some sort of renormalization function. By coupling the {\em{constant-rate totally asymmetric zero-range}} with the totally asymmetric simple exclusion, we derive limiting laws for more general initial conditions.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-02
2014-01-02T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/27339
url http://hdl.handle.net/1822/27339
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-4715
10.1007/s10955-013-0892-8
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132246521675776