A spatial econometric analysis of the calls to the portuguese national health line
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.3390/econometrics5020024 |
Resumo: | This work is financed by national funds through FCT-Foundation for Science and Technology-under the projects UID/MAT/00297/2013 and UID/MAT/00006/2013. |
id |
RCAP_bbaf00648235aaa962531dec5f13586c |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/75191 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A spatial econometric analysis of the calls to the portuguese national health lineAutoregressive modelsBayesian spatial econometric modelsHierarchical modelsPoissonEconomics and EconometricsSDG 3 - Good Health and Well-beingThis work is financed by national funds through FCT-Foundation for Science and Technology-under the projects UID/MAT/00297/2013 and UID/MAT/00006/2013.The Portuguese National Health Line, LS24, is an initiative of the Portuguese Health Ministry which seeks to improve accessibility to health care and to rationalize the use of existing resources by directing users to the most appropriate institutions of the national public health services. This study aims to describe and evaluate the use of LS24. Since for LS24 data, the location attribute is an important source of information to describe its use, this study analyses the number of calls received, at a municipal level, under two different spatial econometric approaches. This analysis is important for future development of decision support indicators in a hospital context, based on the economic impact of the use of this health line. Considering the discrete nature of data, the number of calls to LS24 in each municipality is better modelled by a Poisson model, with some possible covariates: demographic, socio-economic information, characteristics of the Portuguese health system and development indicators. In order to explain model spatial variability, the data autocorrelation can be explained in a Bayesian setting through different hierarchical log-Poisson regression models. A different approach uses an autoregressive methodology, also for count data. A log-Poisson model with a spatial lag autocorrelation component is further considered, better framed under a Bayesian paradigm. With this empirical study we find strong evidence for a spatial structure in the data and obtain similar conclusions with both perspectives of the analysis. This supports the view that the addition of a spatial structure to the model improves estimation, even in the case where some relevant covariates have been included.CMA - Centro de Matemática e AplicaçõesDM - Departamento de MatemáticaRUNSimões, PaulaCarvalho, M. LucíliaAleixo, SandraGomes, SérgioNatário, Isabel2019-07-11T22:43:33Z2017-06-012017-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.3390/econometrics5020024eng2225-1146PURE: 13345227http://www.scopus.com/inward/record.url?scp=85063831948&partnerID=8YFLogxKhttps://doi.org/10.3390/econometrics5020024info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:34:26Zoai:run.unl.pt:10362/75191Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:35:29.552777Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A spatial econometric analysis of the calls to the portuguese national health line |
title |
A spatial econometric analysis of the calls to the portuguese national health line |
spellingShingle |
A spatial econometric analysis of the calls to the portuguese national health line Simões, Paula Autoregressive models Bayesian spatial econometric models Hierarchical models Poisson Economics and Econometrics SDG 3 - Good Health and Well-being |
title_short |
A spatial econometric analysis of the calls to the portuguese national health line |
title_full |
A spatial econometric analysis of the calls to the portuguese national health line |
title_fullStr |
A spatial econometric analysis of the calls to the portuguese national health line |
title_full_unstemmed |
A spatial econometric analysis of the calls to the portuguese national health line |
title_sort |
A spatial econometric analysis of the calls to the portuguese national health line |
author |
Simões, Paula |
author_facet |
Simões, Paula Carvalho, M. Lucília Aleixo, Sandra Gomes, Sérgio Natário, Isabel |
author_role |
author |
author2 |
Carvalho, M. Lucília Aleixo, Sandra Gomes, Sérgio Natário, Isabel |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
CMA - Centro de Matemática e Aplicações DM - Departamento de Matemática RUN |
dc.contributor.author.fl_str_mv |
Simões, Paula Carvalho, M. Lucília Aleixo, Sandra Gomes, Sérgio Natário, Isabel |
dc.subject.por.fl_str_mv |
Autoregressive models Bayesian spatial econometric models Hierarchical models Poisson Economics and Econometrics SDG 3 - Good Health and Well-being |
topic |
Autoregressive models Bayesian spatial econometric models Hierarchical models Poisson Economics and Econometrics SDG 3 - Good Health and Well-being |
description |
This work is financed by national funds through FCT-Foundation for Science and Technology-under the projects UID/MAT/00297/2013 and UID/MAT/00006/2013. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-01 2017-06-01T00:00:00Z 2019-07-11T22:43:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.3390/econometrics5020024 |
url |
https://doi.org/10.3390/econometrics5020024 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2225-1146 PURE: 13345227 http://www.scopus.com/inward/record.url?scp=85063831948&partnerID=8YFLogxK https://doi.org/10.3390/econometrics5020024 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137976088788992 |